The central nervous system is composed of the brain and the spinal cord. The brain is a complex organ that processes and coordinates activities of the body in bilaterian, higher-order animals. The development of the brain mirrors its complex function as it requires intricate genetic signalling at specific times, and deviations from this can lead to brain malformations such as anencephaly. Research into how the CNS is specified and patterned has been studied extensively in chick, fish, frog, and mice, but findings from the latter will be emphasised here as higher-order mammals show most similarity to the human brain. Specifically, we will focus on the embryonic development of an important forebrain structure, the striatum (also known as the dorsal striatum or neostriatum). Over the past decade, research on striatal development in mice has led to an influx of new information about the genes involved, but the precise orchestration between the genes, signalling molecules, and transcription factors remains unanswered. We aim to summarise what is known to date about the tightly controlled network of interacting genes that control striatal development. This paper will discuss early telencephalon patterning and dorsal ventral patterning with specific reference to the genes involved in striatal development.
Human donor cells, including neurally directed embryonic stem cells and induced pluripotent stem cells with the potential to be used for neural transplantation in a range of neurodegenerative disorders, must first be tested preclinically in rodent models of disease to demonstrate safety and efficacy. One strategy for circumventing the rejection of xenotransplanted human cells is to desensitize the host animal to human cells in the early neonatal period so that a subsequent transplant in adulthood is not immunorejected. This method has been robustly validated in the rat, but currently not in the mouse in which most transgenic models of neurodegeneration have been generated. Thus, we set out to determine whether this could be achieved through modification of the existing rat protocol. Mice were inoculated in the neonatal period with a suspension of human embryonic cortical tissue of varying cell numbers, and received a subsequent human embryonic cortical tissue cell transplant in adulthood. Graft survival was compared with those in mice immunosuppressed with cyclosporine A and those receiving allografts of mouse whole ganglionic eminence tissue. Poor survival was found across all groups, suggesting a general problem with the use of mouse hosts for testing human donor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.