The fetal placenta is a source of hormones and immune factors that play a vital role in maintaining pregnancy and facilitating fetal growth. Cells in this extraembryonic compartment match the chromosomal sex of the embryo itself. Sex differences have been observed in common gestational pathologies, highlighting the importance of maternal immune tolerance to the fetal compartment. Over the past decade, several studies examining placentas from term pregnancies have revealed widespread sex differences in hormone signaling, immune signaling, and metabolic functions. Given the rapid and dynamic development of the human placenta, sex differences that exist at term (37–42 weeks gestation) are unlikely to align precisely with those present at earlier stages when the fetal–maternal interface is being formed and the foundations of a healthy or diseased pregnancy are established. While fetal sex as a variable is often left unreported in studies performing transcriptomic profiling of the first-trimester human placenta, four recent studies have specifically examined fetal sex in early human placental development. In this review, we discuss the findings from these publications and consider the evidence for the genetic, hormonal, and immune mechanisms that are theorized to account for sex differences in early human placenta. We also highlight the cellular and molecular processes that are most likely to be impacted by fetal sex and the evolutionary pressures that may have given rise to these differences. With growing recognition of the fetal origins of health and disease, it is important to shed light on sex differences in early prenatal development, as these observations may unlock insight into the foundations of sex-biased pathologies that emerge later in life.
Aim: To understand miRNA changes across gestation in healthy human placentae. This is essential before miRNAs can be used as biomarkers or prognostic indicators during pregnancy. Materials & methods: Using next-generation sequencing, we characterize the normative human placenta miRNome in first (n = 113) and third trimester (n = 47). Results & conclusion: There are 801 miRNAs expressed in both first and third trimester, including 182 with similar expression across gestation (p ≥ 0.05, fold change ≤2) and 180 significantly different (false discovery rate <0.05, fold change >2). Of placenta-specific miRNA clusters, chromosome 14 miRNA cluster decreases across gestation and chromosome 19 miRNA cluster is overall highly expressed. Chromosome 13 clusters are upregulated in first trimester. This work provides a rich atlas of healthy pregnancies to direct functional studies investigating the epigenetic differences in first and third trimester placentae.
BackgroundAltered placenta miRNA abundance may impact the maternal-fetal interface and pregnancy outcomes. Understanding miRNA changes across gestation is essential before miRNAs can be used as biomarkers or prognostic indicators during pregnancy.Materials & MethodsUsing next-generation sequencing, we characterize the normative human placenta miRNA transcriptome in first (N=113) and third trimester (N=47).ResultsThere are 801 miRNAs expressed in both first and third trimester, including 182 with similar expression across gestation (P≥0.05) and 182 significantly different (FDR<0.05). Of placenta-specific miRNA clusters, C14MC is more upregulated in first trimester and C19MC is more highly expressed overall.ConclusionThis work provides a rich atlas of healthy pregnancies to direct functional studies investigating the epigenetic differences in first and third trimester placentae.Lay AbstractThe human body produces microRNAs which affect the expression of genes and proteins. This study uses next generation sequencing to identify the microRNA profile of first and third trimester human placentae using a large cohort (N=113 first, N=47 third trimester). All pregnancies resulted in healthy babies. We identify microRNAs with significantly different expression between first and third trimester, as well as stably expressed microRNAs. This work provides a baseline for future studies which may use microRNAs to monitor maternal-fetal health throughout pregnancy.
Maternal and fetal pregnancy outcomes related to placental function vary based on fetal sex, which may be due to sexually dimorphic epigenetic regulation of RNA expression. We identified sexually dimorphic miRNA expression throughout gestation in human placentae. Next-generation sequencing identified miRNA expression profiles in first and third trimester uncomplicated pregnancies using tissue obtained at chorionic villous sampling (n = 113) and parturition (n = 47). Sequencing analysis identified 986 expressed mature miRNAs from female and male placentae at first and third trimester (baseMean>10). Of these, 11 sexually dimorphic (FDR < 0.05) miRNAs were identified in the first and 4 in the third trimester, all upregulated in females, including miR-361-5p, significant in both trimesters. Sex-specific analyses across gestation identified 677 differentially expressed (DE) miRNAs at FDR < 0.05 and baseMean>10, with 508 DE miRNAs in common between female-specific and male-specific analysis (269 upregulated in first trimester, 239 upregulated in third trimester). Of those, miR-4483 had the highest fold changes across gestation. There were 62.5% more female exclusive differences with fold change>2 across gestation than male exclusive (52 miRNAs vs 32 miRNAs), indicating miRNA expression across human gestation is sexually dimorphic. Pathway enrichment analysis identified significant pathways that were differentially regulated in first and third trimester as well as across gestation. This work provides the normative sex dimorphic miRNA atlas in first and third trimester, as well as the sex-independent and sex-specific placenta miRNA atlas across gestation, which may be used to identify biomarkers of placental function and direct functional studies investigating placental sex differences.
Maternal and fetal pregnancy outcomes related to placental function vary based on fetal sex, which may be the result of sexually dimorphic epigenetic regulation of RNA expression. We identified sexually dimorphic miRNA expression throughout gestation in human placentae. Next-generation sequencing was used to identify miRNA expression profiles in first and third trimester uncomplicated pregnancies using tissue obtained at chorionic villous sampling (n=113) and parturition (n=47). Sequencing and differential expression (DE) analysis identified 432 mature miRNAs expressed in the first trimester female, 425 in the first trimester male, 400 in the third trimester female, and 508 in the third trimester male placenta (baseMean >10). Of these, 11 sexually dimorphic (FDR<0.05, baseMean >10) miRNAs were identified in the first and 4 miRNAs were identified in the third trimester, including miR-361-5p, significant in both trimesters, all upregulated in females. Across gestation, 207 miRNAs were DE across gestation, common to both females and males, miR-4483, the most DE across gestation. There were twice as many female-specific differences across gestation as male-specific (44 miRNAs vs 21 miRNAs), indicating that miRNA abundance across human gestation is sexually dimorphic. Pathway enrichment analysis identified significant pathways that were differentially regulated in first and third trimester as well as across gestation. This work provides the normative sex dimorphic miRNA atlas in first and third trimester, as well as the sex independent and sex specific placenta miRNA atlas across gestation which may be used to identify biomarkers of placental function and direct functional studies investigating placental sex differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.