Subjects with autism may have specific abnormalities in the AMPA-type glutamate receptors and glutamate transporters in the cerebellum. These abnormalities may be directly involved in the pathogenesis of the disorder.
The human brain is thought to have the greatest complexity of gene expression of any region of the body, reflecting the diverse functions of neurons and glia. Studies of gene expression in the human brain may yield fundamental information about the phenotype of brain cells in different stages of development, in different brain regions, and in different physiological and pathological states. As the human genome project nears completion, several technological advances allow the analysis of thousands of expressed genes in a small brain sample. This review describes available sources of human brain material, and several high throughput techniques used to measure the expression of thousands of genes. These techniques include expressed sequence tag (EST) sequencing of cDNA libraries; differential display; subtractive hybridization; serial analysis of gene expression (SAGE); and the emerging technology of high density DNA microarrays. Measurement of gene expression with microarrays and other technologies has potential applications in the study of human brain diseases, including cognitive disorders for which animal models are typically not available. Gene expression measurements may be used to identify genes that are abnormally regulated as a secondary consequence of a disease state, or to identify the response of brain cells to pharmacological treatments.
Studies have identified structural abnormalities in areas of the autistic brain, with a pattern suggesting that a neurodevelopmental anomaly took place. Neural cell adhesion molecule (NCAM), which is involved in development of the central nervous system, was previously shown to be decreased in the serum of autistic individuals. In the present study, we measured NCAM protein in the sera from controls, patients with autism, siblings of autistic patients, and individuals with other neurologic disorders, but found no significant differences. We also measured NCAM protein in autistic postmortem brain samples and found the longest isoform, NCAM-180, to be significantly decreased. In addition, we investigated the mRNA expression of NCAM in these brain samples using cDNA microarrays and RT-PCR. Results show that NCAM mRNA levels are not altered in autism.
Autism is a pervasive developmental disorder of unknown etiology. It is likely caused by mutations in one or more genes. One approach to understanding the molecular changes that occur in autism is to measure gene expression in post-mortem brain samples from individuals diagnosed with autism. This may be accomplished with techniques such as cDNA microarrays or subtractive hybridization. In general, gene expression is regulated as a function of body region, developmental time, and physiological state. A premise of the approaches we describe is that gene expression is regulated in cells from autistic individuals as a consequence of the disease process. It may be useful to detect such changes in order to identify selective biological markers for autism. Additionally, the abnormal regulation of gene expression may reveal cellular pathways that have been disrupted, suggesting strategies for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.