Senescent cells (SnCs) accumulate in many vertebrate tissues with age and contribute to age-related pathologies1–3, presumably through their secretion of factors contributing to the senescence-associated secretory phenotype (SASP)4–6. Removal of SnCs delays several pathologies7–9 and increases healthy lifespan8. Aging and trauma are risk factors for the development of osteoarthritis (OA)10, a chronic disease characterized by degeneration of articular cartilage leading to pain and physical disability. Senescent chondrocytes are found in cartilage tissue isolated from patients undergoing joint replacement surgery11–14, yet their role in disease pathogenesis is unknown. To test the idea that SnCs might play a causative role in OA, we used the p16-3MR transgenic mouse, which harbors a p16INK4a (Cdkn2a) promoter driving the expression of a fusion protein containing synthetic Renilla luciferase and monomeric red fluorescent protein domains, as well as a truncated form of herpes simplex virus 1 thymidine kinase (HSV-TK)15,16. This mouse strain allowed us to selectively follow and remove SnCs after anterior cruciate ligament transection (ACLT). We found that SnCs accumulated in the articular cartilage and synovium after ACLT, and selective elimination of these cells attenuated the development of post-traumatic OA, reduced pain and increased cartilage development. Intra-articular injection of a senolytic molecule that selectively killed SnCs validated these results in transgenic, non-transgenic and aged mice. Selective removal of the SnCs from in vitro cultures of chondrocytes isolated from patients with OA undergoing total knee replacement decreased expression of senescent and inflammatory markers while also increasing expression of cartilage tissue extracellular matrix proteins. Collectively, these findings support the use of SnCs as a therapeutic target for treating degenerative joint disease.
The senescence-associated secretory phenotype (SASP) has recently emerged as a driver of and promising therapeutic target for multiple age-related conditions, ranging from neurodegeneration to cancer. The complexity of the SASP, typically assessed by a few dozen secreted proteins, has been greatly underestimated, and a small set of factors cannot explain the diverse phenotypes it produces in vivo. Here, we present the "SASP Atlas," a comprehensive proteomic database of soluble proteins and exosomal cargo SASP factors originating from multiple senescence inducers and cell types. Each profile consists of hundreds of largely distinct proteins but also includes a subset of proteins elevated in all SASPs. Our analyses identify several candidate biomarkers of cellular senescence that overlap with aging markers in human plasma, including Growth/differentiation factor 15 (GDF15), stanniocalcin 1 (STC1), and serine protease inhibitors (SERPINs), which significantly correlated with age in plasma from a human cohort, the Baltimore Longitudinal Study of Aging (BLSA). Our findings will facilitate the identification of proteins characteristic of senescence-associated phenotypes and catalog potential senescence biomarkers to assess the burden, originating stimulus, and tissue of origin of senescent cells in vivo.
Subjects with autism may have specific abnormalities in the AMPA-type glutamate receptors and glutamate transporters in the cerebellum. These abnormalities may be directly involved in the pathogenesis of the disorder.
The senescence-associated secretory phenotype (SASP) has recently emerged as both a driver of, and promising therapeutic target for, multiple age-related conditions, ranging from neurodegeneration to cancer. The complexity of the SASP, typically monitored by a few dozen secreted proteins, has been greatly underappreciated, and a small set of factors cannot explain the diverse phenotypes it produces in vivo. Here, we present 'SASP Atlas', a comprehensive proteomic database of soluble and exosome SASP factors originating from multiple senescence inducers and cell types. Each profile consists of hundreds of largely distinct proteins, but also includes a subset of proteins elevated in all SASPs. Based on our analyses, we propose several candidate biomarkers of cellular senescence, including GDF15, STC1 and SERPINs. This resource will facilitate identification of proteins that drive specific senescence-associated phenotypes and catalog potential senescence biomarkers to assess the burden, originating stimulus and tissue of senescent cells in vivo. Figure 4. Renal epithelial cells and fibroblasts express distinct sSASPs. A) Venn diagram comparing proteins increased in the sSASP of senescent fibroblasts vs senescent epithelial cells induced by X-irradiation. B) Venn diagram comparing protein increases in the fibroblast sSASP vs decreases in the epithelial sSASP. C) Pathway and network analysis of proteins highly secreted by senescent fibroblasts and epithelial cells. C) Pathway and network analysis of proteins significantly increased in the fibroblast sSASP but significantly decreased in the epithelial cell sSASP.
Senescent cells (SnCs) are associated with age-related pathologies. Osteoarthritis is a chronic disease characterized by pain, loss of cartilage, and joint inflammation, and its incidence increases with age. For years, the presence of SnCs in cartilage isolated from patients undergoing total knee artificial implants has been noted, but these cells' relevance to disease was unclear. In this Review, we summarize current knowledge of SnCs in the multiple tissues that constitute the articular joint. New evidence for the causative role of SnCs in the development of posttraumatic and age-related arthritis is reviewed along with the therapeutic benefit of SnC clearance. As part of their senescence-associated secretory phenotype, SnCs secrete cytokines that impact the immune system and its response to joint tissue trauma. We present concepts of the immune response to tissue trauma as well as the interactions with SnCs and the local tissue environment. Finally, we discuss therapeutic implications of targeting SnCs in treating osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.