Cyclic block copolymers are predicted to assemble into nanostructured domains up to 40% smaller than their linear analogues, making them promising alternatives for nanoscale patterning applications. The limited cyclic block copolymer structures observed experimentally, however, have not met the domain reductions predicted by scaling theory. Through a systematic dissipative particle dynamics simulation study of linear and cyclic block copolymer assembly into lamellar and cylindrical nanostructures, we explore these discrepancies. We find standard implementations of scaling theory, which assume a cyclic BCP behaves as a linear molecule of half the contour length, fail to account for finite chain size effects, resulting in overpredictions of the extent of domain shrinkage upon cyclization. We propose a revised scaling law that clarifies the interplay of chain length, segregation strength, and chain architecture in determining domain spacing reduction attainable by molecular cyclization and offers an explanation for the discrepancies between prior theoretical predictions and experimental results.
Ternary block copolymer (BCP)-homopolymer (HP) blends offer a simple method for tuning nanostructure sizes to meet application-specific demands. Comprehensive dissipative particle dynamic (DPD) simulations were performed to study the impact of polymer interactions, molecular weight, and HP volume fraction (φ HP ) on symmetric ternary blend morphological stability and domain spacing. DPD reproduces key features of the experimental phase diagram, including lamellar domain swelling with increasing φ HP , the formation of an asymmetric bicontinuous microemulsion at a critical HP concentration φ * HP , and macrophase separation with further HP addition. Simulation results matched experimental values for φ * HP and lamellar swelling as a function of HP to BCP chain length ratio, α = N HP /N BCP . Structural analysis of blends with fixed φ HP but varying α confirmed that ternary blends follow the wet/dry brush model of domain swelling with the miscibility of HPs and BCPs depending on α. Longer HPs concentrate in the center of domains, boosting their swelling efficiencies compared to shorter chains. These results advance our understanding of BCP-HP blend phase behavior and demonstrate the value of DPD for studying polymeric blends.
Theoretical descriptions of molecular-scale solvation frequently invoke contributions proportional to the solvent exposed area, under the tacit expectation that those contributions are tied to a surface tension for macroscopic surfaces. Here we examine the application of revised scaled-particle theory (RSPT) to extrapolate molecular simulation results for the wetting of molecular-to-meso-scale repulsive solutes in liquid water and decane to determine the interfacial free energies of hard, flat surfaces. We show that the RSPT yields interfacial free energies at ambient pressures that are consistently greater than that obtained from the liquid-vapor surface tensions of water and decane by ∼4%. Nevertheless, the hard surface and liquid-vapor interfacial free energies are parallel over a broad temperature range at 1 bar indicating similar entropic contributions. With increasing pressure, the hard, flat interfacial free energies exhibit a maximum in the vicinity of ∼1000 bars. This non-monotonic behavior in both water and decane reflects solvent dewetting at low pressures, followed by wetting at higher pressures as the solvents are pushed onto the solute. By comparing the results of RSPT against classic scaled-particle theory (CSPT), we show that CSPT systematically predicts greater entropic penalties for interface formation and makes inconsistent predictions between the pressure dependence of the interfacial free energy and solvent contact density with the solute surface.
The thin film phase behavior of ternary blends consisting of symmetric poly(styrene) (PS)‐b‐poly(dimethylsiloxane)(PDMS), PS, and PDMS was investigated using X‐ray reflectivity (XRR) and atomic force microscopy (AFM). This system is strongly segregated, and the homopolymers are approximately the same length as the corresponding blocks of the copolymer. The XRR and AFM data are used to quantify changes in domain spacing (L) and morphology evolution with increasing homopolymer content (Φ H). In 100 nm thick films, from Φ H = 0 to 0.20, the system maintains a perfect parallel lamellar structure and domains swell as predicted based on theory; however, from Φ H = 0.30 to 0.50, a morphology transition to a “dot pattern” morphology (tentatively identified as perforated lamellae) and mixed morphologies were observed before macrophase separation. In thicker films, dot patterns were observed for a broad range of Φ H before macrophase separation. The absence of the bicontinuous microemulsion phase reported for bulk blends and thin films of perpendicular lamellae and the presence of dot patterns/perforated lamellae are attributed to preferential migration of the PDMS homopolymer to the wetting layers located at the substrate and free air interfaces, which leads to an asymmetric composition within the film and morphology transition. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1443–1451
Block copolymers (BCPs) consist of two or more covalently bound chemically distinct homopolymer blocks. These macromolecules have emerging applications in photonics, membrane separations, and nanolithography stemming from their self-assembly into regular nanoscale structures. Theory suggests that cyclic BCPs should form features up to 40% smaller than their linear analogs while also exhibiting superior thin-film stability and assembly dynamics. However, the complex syntheses required to produce cyclic polymers mean that a need for pure cyclic BCPs would present a challenge to large-scale manufacturing. Here, we employ dissipative particle dynamics simulations to probe the self-assembly behavior of cyclic/linear BCP blends, focusing on nanofeature size and interfacial width as these qualities are critical to nanopatterning applications. We find that for mixtures of symmetric cyclic and linear polymers with equivalent lengths, up to 10% synthetic impurity has a minimal impact on cyclic BCP feature dimensions and interfacial roughness. On the other hand, blending with cyclic BCPs provides a route to “fine-tune” linear BCP feature sizes. We analyze simulated blend domain spacings within the context of strong segregation theory and find significant deviations between simulation and theory that arise from molecular-level packing motifs not included in theory. These insights into blend self-assembly will assist experimentalists in rationally designing BCP materials for advanced nanolithography applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.