A great deal is known about the functional organization of the neural structures that mediate visual object processing in the adult observer. These findings have contributed significantly to our conceptual models of object recognition and identification and provided unique insight into the nature of object representations extracted from visual input. In contrast, little is known about the neural basis of object processing in the infant. The current research used near-infrared spectroscopy (NIRS) as a neuroimaging tool to investigate functional activation of the infant cortex during an object processing task that has been used extensively with infants. The neuroimaging data revealed that the infant cortex is functionally specialized for object processing (i.e., individuation-by-feature) early in the first year but that patterns of activation also change between 3 and 12 months. These changes may reflect functional reorganization of the immature cortex or age-related differences in the cognitive processes engaged during the task.
A great deal is known about the functional organization of cortical networks that mediate visual object processing in the adult. The current research is part of a growing effort to identify the functional maturation of these pathways in the developing brain. The current research used near-infrared spectroscopy to investigate functional activation of the infant cortex during the processing of featural information (shape) and spatiotemporal information (speed of motion) during the first year of life. Our investigation focused on two areas that were implicated in previous studies: anterior temporal cortex and posterior parietal cortex. Neuroimaging data were collected with 207 infants across three age groups: 3 to 6 months (Experiment 1), 7 to 8 months (Experiment 2), and 10 to 12 months (Experiments 3 and 4). The neuroimaging data revealed age-related changes in patterns of activation to shape and speed information, mostly involving posterior parietal areas, some of which were predicted and others that were not. We suggest that these changes reflect age-related differences in the perceptual and/or cognitive processes engaged during the task.
Behavioral studies have identified select experiences that can prime infants to attend to color information as the basis for individuating objects prior to the time they do so spontaneously. For example, viewing pretest events in which the color of an object predicts the function in which it will engage leads 9-month-olds (who typically do not attend to color differences) to demonstrate increased sensitivity to color information in a subsequent individuation task (Wilcox & Chapa, 2004). In contrast, viewing pretest events in which the color of an object predicts distinct object motions, but the motions are not functionally relevant, does not produce color priming. The purpose of the present research was to identify the cortical underpinnings of these behavioral effects. Infants aged 8 and 9 months viewed function or motion pretest events and then their capacity to individuate-by-color was assessed in an object individuation task. Behavioral and neuroimaging data were collected. Two main findings emerged. First, as predicted, the infants who viewed the function but not the motion pretest events showed prolonged looking to the test event, a behavioral indicator of object individuation. In addition, they evidenced increased activation in anterior temporal cortex, thought to be a cortical signature of object individuation. A second and unexpected finding was that viewing either type of pretest events led to increased activation in posterior temporal cortex, as compared to infants who did not see pretest events, revealing that prior exposure to the motion pretest events does influence infants’ processing of the test event, even though it is not evident in the behavioral results. The cognitive processes involved, and the cortical structures that mediate these processes, are discussed.
Adolescents and adults show preferences for male and female body shapes consistent with evolutionary theories of reproductive fitness and mate selection. However, when these preferences for females with narrow waists (i.e., 0.7 waist-to-hip ratio) and men with broad shoulders (i.e., mesomorphic body shape) emerge during the lifespan is largely unknown. To address this knowledge gap, eye-movements were tracked in 146 infants (3–18 months of age) during computer presentation of three-dimensional human figures varying in body features thought relevant for reproductive success (e.g., secondary sex characteristics, waist-to-hip ratio). When presented with pairs of figures differing in apparent sex, male and female infants looked significantly longer at the female figure compared to the male figure, a new finding that extends previous research showing preferences for female faces in infancy. When presented with same-sex figures differing in characteristics associated with mate value, male and female infants looked longer at a low mate value male (i.e., an endomorphic body type) compared to a high mate value male (i.e., a mesomorphic body type), a finding that replicates the results of previous research. In addition, the novel use of high and low mate value female figures showed a sex difference in visual attention, such that female infants looked longer at the high mate value female figure compared to the low mate female figure whereas male infants showed the opposite pattern of results. In sum, these findings suggest that infants generally do not possess preferences for adult-defined attractive male body shapes. However, infant girls’ greater attention to a female figure with an adult-preferred waist-to-hip ratio raises the possibility that evolved preferences for 0.7 waist-to-hip ratio influence girls’ later preference for toys representing females with an hourglass shape, perhaps supporting elaboration of adult social behaviors that enhance reproductive success (e.g., cooperative breeding).
Our capacity to perceive three-dimensional (3D) object structure from two-dimensional (2D) retinal input is fundamental to object perception. The present research examined infants’ ability to extract 3D form from structure-from-motion (SFM) displays using a familiarization/visual-paired-comparison paradigm. In SFM displays dots are projected onto the surfaces of a shape that rotates around a 3D axis and it is the coherent structure of the dots’ motion that gives rise to the percept of shape. Infants mean age 4.5 and 9 months were familiarized to a SFM display (e.g., cylinder); in test they were presented the familiar SFM display paired with a novel SFM display (e.g., cube). Infants in both age groups displayed a significant preference for the novel SFM test display. These results are consistent with those obtained previously using habituation paradigms and provide converging evidence for infants’ early emerging capacity to use coherent motion – in the absence of figural information – as a cue to depth structure. In addition, these results demonstrate that infants’ ability to extract 3D shape from coherent motion can be successfully assessed with a neuroimaging-friendly protocol, which was one of the goals of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.