A random-primed complementary DNA library was constructed from plasma containing the uncharacterized non-A, non-B hepatitis (NANBH) agent and screened with serum from a patient diagnosed with NANBH. A complementary DNA clone was isolated that was shown to encode an antigen associated specifically with NANBH infections. This clone is not derived from host DNA but from an RNA molecule present in NANBH infections that consists of at least 10,000 nucleotides and that is positive-stranded with respect to the encoded NANBH antigen. These data indicate that this clone is derived from the genome of the NANBH agent and are consistent with the agent being similar to the togaviridae or flaviviridae. This molecular approach should be of great value in the isolation and characterization of other unidentified infectious agents.
Chronic hepatitis C virus (HCV) infection occurs in about 3 percent of the world's population and is a major cause of liver disease. HCV infection is also associated with cryoglobulinemia, a B lymphocyte proliferative disorder. Virus tropism is controversial, and the mechanisms of cell entry remain unknown. The HCV envelope protein E2 binds human CD81, a tetraspanin expressed on various cell types including hepatocytes and B lymphocytes. Binding of E2 was mapped to the major extracellular loop of CD81. Recombinant molecules containing this loop bound HCV and antibodies that neutralize HCV infection in vivo inhibited virus binding to CD81 in vitro.
International standardization and coordination of the nomenclature of variants of hepatitis C virus (HCV) is increasingly needed as more is discovered about the scale of HCV-related liver disease and important biological and antigenic differences that exist between variants. A group of scientists expert in the field of HCV genetic variability, and those involved in development of HCV sequence databases, the Hepatitis Virus Database (Japan), euHCVdb (France), and Los Alamos (United States), met to re-examine the status of HCV genotype nomenclature, resolve conflicting genotype or subtype names among described variants of HCV, and draw up revised criteria for the assignment of new genotypes as they are discovered in the future. A comprehensive listing of all currently classified variants of HCV incorporates a number of agreed genotype and subtype name reassignments to create consistency in nomenclature. The paper also contains consensus proposals for the classification of new variants into genotypes and subtypes, which recognizes and incorporates new knowledge of HCV genetic diversity and epidemiology. A proposal was made that HCV variants be classified into 6 genotypes (representing the 6 genetic groups defined by phylogenetic analysis). Subtype name assignment will be either confirmed or provisional, depending on the availability of complete or partial nucleotide sequence data, or remain unassigned where fewer than 3 examples of a new subtype have been described. In conclusion, these proposals provide the framework by which the HCV databases store and provide access to data on HCV, which will internationally coordinate the assignment of new genotypes and subtypes in the future. (HEPATOLOGY 2005;42:962-973.)
To investigate the type of immunity responsible for resolution of hepatitis C virus (HCV) infection, we monitored antibody and intrahepatic cytotoxic T lymphocyte (CTL) responses during acute (<20 weeks) infection in chimpanzees. Two animals who terminated infection made strong CTL but poor antibody responses. In both resolvers, CTL targeted at least six viral regions. In contrast, animals developing chronic hepatitis generated weaker acute CTL responses. Extensive analysis of the fine specificity of the CTL in one resolver revealed nine peptide epitopes and restriction by all six MHC class I allotypes. Every specificity shown during acute hepatitis persisted in normal liver tissue more than 1 yr after resolution. These results suggest that CD8+CTL are better correlated with protection against HCV infection than antibodies.
E2/nonstructural protein 1, the putative envelope glycoprotein (gp72) of HCV, possesses an N-terminal hypervariable (E2 HV) domain from amino acids 384 to 414 of unknown sinificance. The high degree of amino acid sequence variation in the E2 HV domain appears to be comparable to that observed in the human immunodeficiency virus type 1 gp120 V3 domain. This observation and the observation that the HCV E2 HV domain lacks conserved secondary structure imply that, like the V3 loop of human immunodeficiency virus 1 gpl20, the N-terminal E2 region may encode protective epitopes that are subject to immune selection. Antibodyepitope binding studies revealed five isolate-specific linear epitopes located in the E2 HV region. These results suggest that the E2 HV domain is a target for the human immune response and that, in addition to the three major groups ofHCV, defined by nucleotide and amino acid sequence identity among HCV isolates, E2 HV-specific subgroups also exist. Analysis of the partial or complete E2 sequences of two individuals indicated that E2 HV variants can either coexist simultaneously in a single individual or that a particular variant may predominate during different episodes of disease. In the latter situation, we found one individual who developed antibodies to a subregion ofthe E2 HV domain (amino acids 396-407) specific to a variant that was predominant during one major episode ofhepatitis but who lacked detectable antibodies to the corresponding region of a second variant that was predominant during a later episode of disease. The data suggest that the variability in the E2 HV domain may result from immune selection. The fings of this report could impact vaccine strategies and drug therapy programs designed to control and eliminate HCV.HCV is the major etiologic agent oftransfusion-associated and community-acquired non-A, non-B hepatitis on several continents (1-3). A high rate ofchronic hepatitis is associated with HCV infections (4, 5). Two patterns of HCV-associated chronic liver disease have been described in humans and chimpanzees (4 tTo whom reprint requests should be addressed. 3468The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.