Tyro-3, Axl, and Mer constitute the TAM family of receptor tyrosine kinases (RTKs) characterized by a conserved sequence within the kinase domain and adhesion molecule-like extracellular domains. This small family of RTKs regulates an intriguing mix of processes, including cell proliferation/survival, cell adhesion and migration, blood clot stabilization, and regulation of inflammatory cytokine release. Genetic or experimental alteration of TAM receptor function can contribute to a number of disease states, including coagulopathy, autoimmune disease, retinitis pigmentosa, and cancer. In this chapter, we first provide a comprehensive review of the structure, regulation, biologic functions, and down-stream signaling pathways of these receptors. In addition, we discuss recent evidence which suggests a role for TAM receptors in oncogenic mechanisms as family members are over-expressed in a spectrum of human cancers and have prognostic significance in some. Possible strategies for targeted inhibition of the TAM family in the treatment of human cancer are described. Further research will be necessary to evaluate the full clinical implications of TAM family expression and activation in cancer.
Tisagenlecleucel is a CD19 chimeric antigen receptor (CAR) T-cell therapy approved for treatment of pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia (ALL) and adults with non-Hodgkin lymphoma (NHL). The initial experience with tisagenlecleucel in a real-world setting from a cellular therapy registry is presented here. As of January 2020, 511 patients were enrolled from 73 centers, and 410 patients had follow-up data reported (ALL, n = 255; NHL, n = 155), with a median follow-up of 13.4 and 11.9 months for ALL and NHL, respectively. Among patients with ALL, the initial complete remission (CR) rate was 85.5%. Twelve-month duration of response (DOR), event-free survival, and overall survival (OS) rates were 60.9%, 52.4%, and 77.2%, respectively. Among adults with NHL, the best overall response rate was 61.8%, including an initial CR rate of 39.5%. Six-month DOR, progression-free survival, and OS rates were 55.3%, 38.7%, and 70.7%, respectively. Grade ≥3 cytokine release syndrome and neurotoxicity were reported in 11.6% and 7.5% of all patients, respectively. Similar outcomes were observed in patients with in-specification and out-of-specification products as a result of viability <80% (range, 61% to 79%). This first report of tisagenlecleucel in the real-world setting demonstrates outcomes with similar efficacy and improved safety compared with those seen in the pivotal trials.
Importance of the field-Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the specific role of these receptor tyrosine kinases (RTKs) in the development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to mechanisms of cell survival, migration, invasion, metastasis, and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer.Areas covered in this review-Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, non-small cell lung cancer, and breast cancer is examined. A comprehensive discussion of Axl and/or Mer inhibitors in development is also provided.What the reader will gain-Potential toxicities associated with Axl or Mer inhibition are addressed. We hypothesize that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a unique therapeutic opportunity to target both tumor cells and the stromal components which facilitate disease progression.Take home message-Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted Keywords animal models; apoptosis; astrocytoma; breast cancer; cell migration/invasion; cell survival; chemosensitivity; glioblastoma multiforme; glioma; human; metastasis; non-small cell lung cancer; protein kinase inhibitor; receptor tyrosine kinase; signal transduction; targeted therapy NIH Public Access Article Highlights• Axl and/or Mer receptor tyrosine kinases and their ligands are aberrantly expressed in numerous human cancers. In the absence of described activating mutations, the oncogenic potential of these kinases is thought to arise from autocrine and/or paracrine activation.• Signaling networks downstream of Axl and Mer contribute to a variety of oncogenic mechanisms including cell survival and proliferation, migration and invasion, angiogenesis, chemoresistance, and metastasis.• Axl and Mer inhibition constitutes a novel therapeutic strategy that may enhance the efficacy of standard chemotherapy in glioblastoma multiforme, non-small cell lung cancer, and breast cancer.• Several Axl/Mer inhibitors are currently in development including small molecule tyrosine kinase inhibitors, monoclonal antibodies, and fusion proteins.
Astrocytomas account for the majority of malignant brain tumors diagnosed in both adult and pediatric patients. The therapies available to treat these neoplasms are limited, and the prognosis associated with high-grade lesions is extremely poor. Mer (MerTK) and Axl receptor tyrosine kinases (RTK) are expressed at abnormally high levels in a variety of malignancies, and these receptors are known to activate strong antiapoptotic signaling pathways that promote oncogenesis. In this study, we found that Mer and Axl mRNA transcript and protein expression were elevated in astrocytic patient samples and cell lines. shRNA-mediated knockdown of Mer and Axl RTK expression led to an increase in apoptosis in astrocytoma cells. Apoptotic signaling pathways including Akt and extracellular signal–regulated kinase 1/2, which have been shown to be activated in resistant astrocytomas, were downregulated with Mer and Axl inhibition whereas poly(ADP-ribose) poly-merase cleavage was increased. Furthermore, Mer and Axl shRNA knockdown led to a profound decrease of astrocytoma cell proliferation in soft agar and a significant increase in chemosensitivity in response to temozolomide, carboplatin, and vincristine treatment. Our results suggest Mer and Axl RTK inhibition as a novel method to improve apoptotic response and chemosensitivity in astrocytoma and provide support for these oncogenes as attractive biological targets for astrocytoma drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.