Basal-like breast tumors occurred at a higher prevalence among premenopausal African American patients compared with postmenopausal African American and non-African American patients in this population-based study. A higher prevalence of basal-like breast tumors and a lower prevalence of luminal A tumors could contribute to the poor prognosis of young African American women with breast cancer.
Apoptosis is fundamental to the development and maintenance of animal tissues and the immune system. Rapid clearance of apoptotic cells by macrophages is important to inhibit inflammation and autoimmune responses against intracellular antigens. Here we report a new function for Mer, a member of the Axl/Mer/Tyro3 receptor tyrosine kinase family. mer(kd) mice with a cytoplasmic truncation of Mer had macrophages deficient in the clearance of apoptotic thymocytes. This was corrected in chimaeric mice reconstituted with bone marrow from wild-type animals. Primary macrophages isolated from mer(kd) mice showed that the phagocytic deficiency was restricted to apoptotic cells and was independent of Fc receptor-mediated phagocytosis or ingestion of other particles. The inability to clear apoptotic cells adequately may be linked to an increased number of nuclear autoantibodies in mer(kd) mice. Thus, the Mer receptor tyrosine kinase seems to be critical for the engulfment and efficient clearance of apoptotic cells. This has implications for inflammation and autoimmune diseases such as systemic lupus erythematosus.
Tyro-3, Axl, and Mer constitute the TAM family of receptor tyrosine kinases (RTKs) characterized by a conserved sequence within the kinase domain and adhesion molecule-like extracellular domains. This small family of RTKs regulates an intriguing mix of processes, including cell proliferation/survival, cell adhesion and migration, blood clot stabilization, and regulation of inflammatory cytokine release. Genetic or experimental alteration of TAM receptor function can contribute to a number of disease states, including coagulopathy, autoimmune disease, retinitis pigmentosa, and cancer. In this chapter, we first provide a comprehensive review of the structure, regulation, biologic functions, and down-stream signaling pathways of these receptors. In addition, we discuss recent evidence which suggests a role for TAM receptors in oncogenic mechanisms as family members are over-expressed in a spectrum of human cancers and have prognostic significance in some. Possible strategies for targeted inhibition of the TAM family in the treatment of human cancer are described. Further research will be necessary to evaluate the full clinical implications of TAM family expression and activation in cancer.
The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.
We have generated and analysed null mutations in the mouse genes encoding three structurally related receptors with tyrosine kinase activity: Tyro 3, Axl, and Mer. Mice lacking any single receptor, or any combination of two receptors, are viable and fertile, but male animals that lack all three receptors produce no mature sperm, owing to the progressive death of differentiating germ cells. This degenerative phenotype appears to result from a failure of the tropic support that is normally provided by Sertoli cells of the seminiferous tubules, whose function depends on testosterone and additional factors produced by Leydig cells. Tyro 3, Axl and Mer are all normally expressed by Sertoli cells during postnatal development, whereas their ligands, Gas6 and protein S, are produced by Leydig cells before sexual maturity, and by both Leydig and Sertoli cells thereafter. Here we show that the concerted activation of Tyro 3, Axl and Mer in Sertoli cells is critical to the role that these cells play as nurturers of developing germ cells. Additional observations indicate that these receptors may also be essential for the tropic maintenance of diverse cell types in the mature nervous, immune and reproductive systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.