Questions How does spatial scale (extent and grain) influence the relative importance of different environmental factors as determinants of plant community composition? Are there general scale thresholds that mark the transition from primarily edaphic to primarily climatic control of plant communities? Location Global. Methods We surveyed the empirical literature and identified 89 analyses from 63 published studies that analysed vegetation–environment relationships involving at least two categories of predictor variables (edaphic, climatic, topographic, biotic, spatial or disturbance‐related). For each analysis, we identified the primary predictor variable (i.e. the variable that explained the most variation in community composition) and the relative effect size of the best predictor variable from each category. We defined ‘primacy’ as the proportion of times a variable category was primary when it was measured, and analysed primacy and the relative effect size of each category as a function of spatial extent and grain. We also analysed the subset of studies that measured both edaphic and climatic variables to identify spatial extent and grain thresholds for the primacy of these factors. We surveyed the empirical literature and identified 89 analyses from 63 published studies that analysed vegetation–environment relationships involving at least two categories of predictor variables (edaphic, climatic, topographic, biotic, spatial or disturbance‐related). For each analysis, we identified the primary predictor variable (i.e. the variable that explained the most variation in community composition) and the relative effect size of the best predictor variable from each category. We defined ‘primacy’ as the proportion of times a variable category was primary when it was measured, and analysed primacy and the relative effect size of each category as a function of spatial extent and grain. We also analysed the subset of studies that measured both edaphic and climatic variables to identify spatial extent and grain thresholds for the primacy of these factors. Results Edaphic variables had the highest primacy in the overall data set and at fine grain sizes (<200 m2), but there were no strong trends in primacy across studies of varying spatial extent. We detected trends of increasing relative effect size of climatic variables with increasing spatial extent, and decreasing relative effect size of edaphic variables with increasing spatial grain, although these patterns were not statistically significant. Among studies that measured both edaphic and climatic variables, the importance of climate factors relative to edaphic factors increased with increasing spatial extent and grain, with scale thresholds of 1995 km2 for extent and 295 m2 for grain. Conclusions Our study illustrates that vegetation–environment relationships depend on the spatial scale (extent and grain) of observation and provide empirical support for the view that there is a transition from a primarily edaphic influence to a primarily climatic influence o...
Mercury (Hg) is a globally distributed environmental contaminant with a variety of deleterious effects in fish, wildlife, and humans. Breeding songbirds may be useful sentinels for Hg across diverse habitats because they can be effectively sampled, have well-defined and small territories, and can integrate pollutant exposure over time and space. We analyzed blood total Hg concentrations from 8,446 individuals of 102 species of songbirds, sampled on their breeding territories across 161 sites in eastern North America [geometric mean Hg concentration = 0.25 μg/g wet weight (ww), range <0.01-14.60 μg/g ww]. Our records span an important time period-the decade leading up to implementation of the USEPA Mercury and Air Toxics Standards, which will reduce Hg emissions from coal-fired power plants by over 90 %. Mixed-effects modeling indicated that habitat, foraging guild, and age were important predictors of blood Hg concentrations across species and sites. Blood Hg concentrations in adult invertebrate-eating songbirds were consistently higher in wetland habitats (freshwater or estuarine) than upland forests. Generally, adults exhibited higher blood Hg concentrations than juveniles within each habitat type. We used model results to examine species-specific differences in blood Hg concentrations during this time period, identifying potential Hg sentinels in each region and habitat type. Our results present the most comprehensive assessment of blood Hg concentrations in eastern songbirds to date, and thereby provide a valuable framework for designing and evaluating risk assessment schemes using sentinel songbird species in the time after implementation of the new atmospheric Hg standards.
Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.