Aim Determining the relative influence of niche‐based and neutral processes in driving the spatial turnover of community composition is a central challenge in community ecology. Spatial patterns of functional turnover, or functional beta diversity, may capture important signals of niche‐based assembly processes, but these patterns have not been quantified for communities across broad geographic and environmental gradients. Here, we analyse continental‐scale patterns of species and functional beta diversity in relation to space and the environment to assess the relative importance of niche‐based and neutral community assembly mechanisms. Location Eastern North America. Methods We use a continental‐scale forest plot dataset and functional trait data to quantify spatial patterns of species and functional beta diversity. We use redundancy analysis‐based variance partitioning to evaluate the influence of space, soil and climate on beta‐diversity metrics. We use a null model approach to test for non‐random functional beta diversity given the observed patterns of species turnover across spatial scales. Results Species and functional beta diversity increased with increasing geographic distance (i.e. distance decay of community similarity). Results of variance partitioning analysis show that species and functional beta diversity were spatially structured and significantly related to environmental, particularly climatic, variation. Results of null model analysis show that functional beta diversity was lower than expected based on species turnover at fine scales (< 600 km) and higher than expected at broad scales (> 1800 km). Main conclusions The observed patterns of functional beta diversity support a niche‐based model of community assembly, driven by the deterministic filtering of species across environmental gradients based on their functional traits.
Questions How does spatial scale (extent and grain) influence the relative importance of different environmental factors as determinants of plant community composition? Are there general scale thresholds that mark the transition from primarily edaphic to primarily climatic control of plant communities? Location Global. Methods We surveyed the empirical literature and identified 89 analyses from 63 published studies that analysed vegetation–environment relationships involving at least two categories of predictor variables (edaphic, climatic, topographic, biotic, spatial or disturbance‐related). For each analysis, we identified the primary predictor variable (i.e. the variable that explained the most variation in community composition) and the relative effect size of the best predictor variable from each category. We defined ‘primacy’ as the proportion of times a variable category was primary when it was measured, and analysed primacy and the relative effect size of each category as a function of spatial extent and grain. We also analysed the subset of studies that measured both edaphic and climatic variables to identify spatial extent and grain thresholds for the primacy of these factors. We surveyed the empirical literature and identified 89 analyses from 63 published studies that analysed vegetation–environment relationships involving at least two categories of predictor variables (edaphic, climatic, topographic, biotic, spatial or disturbance‐related). For each analysis, we identified the primary predictor variable (i.e. the variable that explained the most variation in community composition) and the relative effect size of the best predictor variable from each category. We defined ‘primacy’ as the proportion of times a variable category was primary when it was measured, and analysed primacy and the relative effect size of each category as a function of spatial extent and grain. We also analysed the subset of studies that measured both edaphic and climatic variables to identify spatial extent and grain thresholds for the primacy of these factors. Results Edaphic variables had the highest primacy in the overall data set and at fine grain sizes (<200 m2), but there were no strong trends in primacy across studies of varying spatial extent. We detected trends of increasing relative effect size of climatic variables with increasing spatial extent, and decreasing relative effect size of edaphic variables with increasing spatial grain, although these patterns were not statistically significant. Among studies that measured both edaphic and climatic variables, the importance of climate factors relative to edaphic factors increased with increasing spatial extent and grain, with scale thresholds of 1995 km2 for extent and 295 m2 for grain. Conclusions Our study illustrates that vegetation–environment relationships depend on the spatial scale (extent and grain) of observation and provide empirical support for the view that there is a transition from a primarily edaphic influence to a primarily climatic influence o...
Abstract. Under business as usual (BAU) management, stresses posed by climate change may exceed the ability of Great Lake forests to adapt. Temperature and precipitation projections in the Great Lakes region are expected to change forest tree species composition and productivity. It is unknown how a change in productivity and/or tree species diversity due to climate change will affect the relationship between diversity and productivity. We assessed how forests in two landscapes (i.e., northern lower Michigan and northeastern Minnesota, USA) would respond to climate change and explored the diversityproductivity relationship under climate change. In addition, we explored how tree species diversity varied across landscapes by soil type, climate, and management. We used a spatially dynamic forest ecosystem model, LANDIS-II, to simulate BAU forest management under three climate scenarios (current climate, low emissions, and high emissions) in each landscape. We found a positive relationship between diversity and productivity only under a high emissions future as productivity declined. Within landscapes, climate change simulations resulted in the highest diversity in the coolest climate regions and lowest diversity in the warmest climate region in Minnesota and Michigan, respectively. Simulated productivity declined in both landscapes under the high emissions climate scenario as species such as balsam fir (Abies balsamea) declined in abundance. In the Great Lakes region, a high emissions future may decrease forest productivity creating a more positive relationship between diversity and productivity. Maintaining a diversity of tree species may become increasingly important to maintain the adaptive capacity of forests.
Abstract. The extent to which current landscapes deviate from the historical range of natural variability (RNV) is a common means of defining and ranking regional conservation targets. However, climate-induced shifts in forest composition may render obsolete restoration strategies and conservation targets based on historic climate conditions and disturbance regimes. We used a spatially explicit forest ecosystem model, LANDIS-II, to simulate the interaction of climate change and forest management in northeastern Minnesota, USA. We assessed the relevance of restoration strategies and conservation targets based on the RNV in the context of future climate change. Three climate scenarios (no climate change, low emissions, and high emissions) were simulated with three forest management scenarios: no harvest, current management, and a restoration-based approach where harvest activity mimicked the frequency, severity, and size distribution of historic natural disturbance regimes. Under climate change there was a trend toward homogenization of forest conditions due to the widespread expansion of systems dominated by maple (Acer spp.). White spruce (Picea glauca), balsam fir (Abies balsamea), and paper birch (Betula papyrifera) were extirpated from the landscape irrespective of management activity; additional losses of black spruce (P. mariana), red pine (Pinus resinosa), and jack pine (P. banksiana) were projected in the highemissions scenario. In the restoration management scenario, retention and conversion to white pine (P. strobus) restricted maple expansion. But, widespread forest loss in the restoration scenario under high-emissions projections illustrates the potential pitfalls of implementing an RNV management approach in a system that is not compositionally similar to the historic reference condition. Given the uncertainty associated with climate change, ensuring a diversity of species and conditions within forested landscapes may be the most effective means of ensuring the future resistance of ecosystems to climate-induced declines in productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.