The ongoing evolution of Ebolaviruses poses significant challenges to the development of immunodiagnostics for detecting emergent viral variants. There is a critical need for the discovery of monoclonal antibodies with distinct affinities and specificities for different Ebolaviruses. We developed an efficient technology for the rapid discovery of a plethora of antigen-specific monoclonal antibodies from immunized animals by mining the VH:VL paired antibody repertoire encoded by highly expanded B cells in the draining popliteal lymph node (PLN). This approach requires neither screening nor selection for antigen-binding. Specifically we show that mouse immunization with Ebola VLPs gives rise to a highly polarized antibody repertoire in CD138+ antibody-secreting cells within the PLN. All highly expanded antibody clones (7/7 distinct clones/animal) were expressed recombinantly, and shown to recognize the VLPs used for immunization. Using this approach we obtained diverse panels of antibodies including: (i) antibodies with high affinity towards GP; (ii) antibodies which bound Ebola VLP Kissidougou-C15, the strain circulating in the recent West African outbreak; (iii) non-GP binding antibodies that recognize wild type Sudan or Bundibugyo viruses that have 39% and 37% sequence divergence from Ebola virus, respectively and (iv) antibodies to the Reston virus GP for which no antibodies have been reported.
IntroductionChanges in cerebrospinal fluid (CSF) tau and amyloid β (Aβ)42 accompany development of Alzheimer's brain pathology. Robust tau and Aβ42 immunoassays were developed to establish a tau/Aβ42 cutoff distinguishing mild-to-moderate Alzheimer's disease (AD) subjects from healthy elderly control (HC) subjects.MethodsA CSF tau/Aβ42 cutoff criteria was chosen, which distinguished the groups and maximized concordance with amyloid PET. Performance was assessed using an independent validation cohort.ResultsA tau/Aβ42 = 0.215 cutoff provided 94.8% sensitivity and 77.7% specificity. Concordance with PET visual reads was estimated at 86.9% in a ∼50% PET positive population. In the validation cohort, the cutoff demonstrated 78.4% sensitivity and 84.9% specificity to distinguish the AD and HC populations.DiscussionA tau/Aβ42 cutoff with acceptable sensitivity and specificity distinguished HC from mild-to-moderate AD subjects and maximized concordance to brain amyloidosis. The defined cutoff demonstrated that CSF analysis may be useful as a surrogate to imaging assessment of AD pathology.
Scientific Reports 5: Article number: 13926; published online: 10 September 2015; updated: 10 June 2016 Hidetaka Tanno and Chang-Han Lee were omitted from the author list in the original version of this Article. This has been corrected in the PDF and HTML versions of the Article. The Author Contributions section now reads:
TP42/40 in healthy individuals are associated with high amyloid PET and also with faster progression of brain amyloidosis during follow-up. Thus, plasma TP42/40 has potential for being considered as a cost-effective and non-invasive biomarker for AD as well as a useful tool for recruitment in early stage clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.