Using a sample of 144 000 quasars from the Sloan Digital Sky Survey data release 14 we investigate the outflow properties, evident both in absorption and emission, of high-ionization Broad Absorption Line (BAL) and non-BAL quasars with redshifts 1.6 z ≤ 3.5 and luminosities 45.3 < log 10 (L bol ) < 48.2 erg s −1 . Key to the investigation is a continuum and emission-line reconstruction scheme, based on meanfield independent component analysis, that allows the kinematic properties of the C ivλ1550 emission line to be compared directly for both non-BAL and BAL quasars. C iv-emission blueshift and equivalent-width (EW) measurements are thus available for both populations. Comparisons of the emission-line and BAL-trough properties reveal strong systematic correlations between the emission and absorption properties. The dependence of quantitative outflow indicators on physical properties such as quasar luminosity and luminosity relative to Eddington-luminosity are also shown to be essentially identical for the BAL and non-BAL populations. There is an absence of BALs in quasars with the hardest spectral energy distributions (SEDs), revealed by the presence of strong He iiλ1640 emission, large C ivλ1550-emission EW and no measurable blueshift. In the remainder of the C iv-emission blueshift versus EW space, BAL and non-BAL quasars are present at all locations; for every BAL-quasar it is possible to identify non-BAL quasars with the same emission-line outflow properties and SED-hardness. The co-location of BAL and non-BAL quasars as a function of emission-line outflow and physical properties is the key result of our investigation, demonstrating that (high-ionization) BALs and non-BALs represent different views of the same underlying quasar population.
We use multiepoch quasar spectroscopy to determine how accurately single-epoch spectroscopy can locate quasars in emission-line parameter space in order to inform investigations where time-resolved spectroscopy is not available. We explore the improvements in emission-line characterization that result from using nonparametric information from many lines as opposed to a small number of parameters for a single line, utilizing reconstructions based on an independent component analysis applied to the data from the Sloan Digital Sky Survey Reverberation Mapping project. We find that most of the quasars are well described by just two components, while more components signal a quasar likely to yield a successful reverberation mapping analysis. In single-epoch spectroscopy the apparent variability of equivalent width is exaggerated because it is dependent on the continuum. Multiepoch spectroscopy reveals that single-epoch results do not significantly change where quasars are located in C iv parameter space and do not have a significant impact on investigations of the global Baldwin effect. Quasars with emission-line properties indicative of higher L/L Edd are less variable, consistent with models with enhanced accretion disk density. Narrow absorption features at the systemic redshift may be indicative of orientation (including radio-quiet quasars) and may appear in as much as 20% of the quasar sample. Future work applying these techniques to lower-luminosity quasars will be important for understanding the nature of accretion disk winds.
The flux ratios of high-ionization lines are commonly assumed to indicate the metallicity of the broad emission line region in luminous quasars. When accounting for the variation in their kinematic profiles, we show that the N v/C iv, (Si iv+O iv])/C iv and N v/Ly α line ratios do not vary as a function of the quasar continuum luminosity, black hole mass, or accretion rate. Using photoionization models from CLOUDY, we further show that the observed changes in these line ratios can be explained by emission from gas with solar abundances, if the physical conditions of the emitting gas are allowed to vary over a broad range of densities and ionizing fluxes. The diversity of broad line emission in quasar spectra can be explained by a model with emission from two kinematically distinct regions, where the line ratios suggest that these regions have either very different metallicity or density. Both simplicity and current galaxy evolution models suggest that near-solar abundances, with parts of the spectrum forming in high-density clouds, are more likely. Within this paradigm, objects with stronger outflow signatures show stronger emission from gas which is denser and located closer to the ionizing source, at radii consistent with simulations of line-driven disc-winds. Studies using broad-line ratios to infer chemical enrichment histories should consider changes in density and ionizing flux before estimating metallicities.
Using data from SDSS, UKIDSS and WISE, we investigate the properties of the high-frequency cutoff to the infrared emission in ≃5000 carefully selected luminous (Lbol ∼ 1047) type 1 quasars. The strength of ≃2 μm emission, corresponding to emission from the hottest ($T>1200\rm \, K$) dust in the sublimation zone surrounding the central continuum source, is observed to correlate with the blueshift of the C iv λ1550 emission line. We therefore find that objects with stronger signatures of nuclear outflows tend to have a larger covering fraction of sublimation-temperature dust. When controlling for the observed outflow strength, the hot dust covering fraction does not vary significantly across our sample as a function of luminosity, black hole mass or Eddington fraction. The correlation between the hot dust and the C iv line blueshifts, together with the lack of correlation between the hot dust and other parameters, therefore provides evidence of a link between the properties of the broad emission line region and the infrared-emitting dusty regions in quasars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.