We use multiepoch quasar spectroscopy to determine how accurately single-epoch spectroscopy can locate quasars in emission-line parameter space in order to inform investigations where time-resolved spectroscopy is not available. We explore the improvements in emission-line characterization that result from using nonparametric information from many lines as opposed to a small number of parameters for a single line, utilizing reconstructions based on an independent component analysis applied to the data from the Sloan Digital Sky Survey Reverberation Mapping project. We find that most of the quasars are well described by just two components, while more components signal a quasar likely to yield a successful reverberation mapping analysis. In single-epoch spectroscopy the apparent variability of equivalent width is exaggerated because it is dependent on the continuum. Multiepoch spectroscopy reveals that single-epoch results do not significantly change where quasars are located in C iv parameter space and do not have a significant impact on investigations of the global Baldwin effect. Quasars with emission-line properties indicative of higher L/L Edd are less variable, consistent with models with enhanced accretion disk density. Narrow absorption features at the systemic redshift may be indicative of orientation (including radio-quiet quasars) and may appear in as much as 20% of the quasar sample. Future work applying these techniques to lower-luminosity quasars will be important for understanding the nature of accretion disk winds.
We examine the UV/X-ray properties of 1378 quasars in order to link empirical correlations to theoretical models of the physical mechanisms dominating quasars as a function of mass and accretion rate. The clarity of these correlations is improved when (1) using C iv broad emission line equivalent width (EQW) and blueshift (relative to systemic) values calculated from high signal-to-noise ratio reconstructions of optical/UV spectra and (2) removing quasars expected to be absorbed based on their UV/X-ray spectral slopes. In addition to using the traditional C iv parameter space measures of C iv EQW and blueshift, we define a “C iv ∥ distance” along a best-fit polynomial curve that incorporates information from both C iv parameters. We find that the C iv ∥ distance is linearly correlated with both the optical-to-X-ray slope, α ox, and broad-line He ii EQW, which are known spectral energy distribution indicators, but does not require X-ray or high spectral resolution UV observations to compute. The C iv ∥ distance may be a better indicator of the mass-weighted accretion rate, parameterized by L/L Edd, than the C iv EQW or blueshift alone, as those relationships are known to break down at the extrema. Conversely, there is only a weak correlation with the X-ray energy index (Γ), an alternate L/L Edd indicator. We find no X-ray or optical trends in the direction perpendicular to the C iv distance that could be used to reveal differences in accretion disk, wind, or corona structure that could be widening the C iv EQW–blueshift distribution. A different parameter (such as metallicity) not traced by these data must come into play.
We discuss a probe of the contribution of wind-related shocks to the radio emission in otherwise radio-quiet quasars. Given (1) the nonlinear correlation between UV and X-ray luminosity in quasars, (2) that such a correlation leads to higher likelihood of radiation-line-driven winds in more luminous quasars, and (3) that luminous quasars are more abundant at high redshift, deep radio observations of high-redshift quasars are needed to probe potential contributions from accretion disk winds. We target a sample of 50 z ≃ 1.65 color-selected quasars that span the range of expected accretion disk wind properties as traced by broad C iv emission. 3 GHz observations with the Very Large Array to an rms of ≈10 μJy beam−1 probe to star formation rates of ∼400 M ⊙ yr−1, leading to 22 detections. Supplementing these pointed observations are survey data of 388 sources from the LOFAR Two-meter Sky Survey Data Release 1 that reach comparable depth (for a typical radio spectral index), where 123 sources are detected. These combined observations reveal a radio detection fraction that is a nonlinear function of C iv emission-line properties and suggest that the data may require multiple origins of radio emission in radio-quiet quasars. We find evidence for radio emission from weak jets or coronae in radio-quiet quasars with low Eddington ratios, with either (or both) star formation and accretion disk winds playing an important role in optically luminous quasars and correlated with increasing Eddington ratio. Additional pointed radio observations are needed to fully establish the nature of radio emission in radio-quiet quasars.
We present 10 seasons of Sloan Digital Sky Survey r-band monitoring observations and five seasons of H-band observations of the two-image system FBQ J0951+2635 from the Kaj Strand Astrometric Reflector at the United States Naval Observatory, Flagstaff Station. We supplement our light curves with six seasons of monitoring data from the literature to yield a 10 + 6 season combined data set, which we analyzed with our Monte Carlo microlensing analysis routine to generate constraints on the structure of this system’s continuum emission source and the properties of the lens galaxy. Complementing our optical light curves with the five-season near-infrared light curves, we ran a joint Monte Carlo analysis to measure the size of the continuum emission region at both wavelengths, yielding log(r 1/2 cm−1) = 16.24 − 0.36 + 0.33 in the r band and 17.04 − 0.30 + 0.26 in the H band at rest wavelengths of 2744 and 7254 Å, respectively, correcting for an assumed inclination angle of 60°. Modeling the accretion disk temperature profile as a power law T(r) ∝ r −β , we successfully constrain the slope for FBQ J0951+2635 to β = 0.50 − 0.18 + 0.50 , shallower than, but nominally consistent with, the predictions of standard thin-disk theory, β = 0.75.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.