Epidemiology formed the basis of 'the Barker hypothesis', the concept of 'developmental programming' and today's discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Background: Around 30-40% of the world's population will experience allergy, the most common and earliest-onset noncommunicable disease. With a steady rise in the incidence of allergic disease over recent decades, up to 18% of children will suffer a respiratory, food or skin allergy before their 18th birthday. There is compelling evidence that the risk of developing allergy is influenced by early life events and particularly in utero exposures. Methods: A comprehensive literature review was undertaken which outlines prenatal risk factors and potential mechanisms underlying the development of allergy in childhood. Results: Exposures including maternal cigarette smoking, preterm birth and Caesarean delivery are implicated in predisposing infants to the later development of allergy. In contrast, restricted growth in utero, a healthy maternal diet and a larger family size are protective, but the mechanisms here are unclear and require further investigation. Conclusion: To ameliorate the allergy pandemic in young children, we must define prenatal mechanisms that alter the programming of the fetal immune system and also identify specific targets for antenatal interventions.
Key pointsr We studied the effects of preconceptional allergen sensitisation and repeated airway allergen challenges during pregnancy on maternal immune and airway functions during pregnancy, and maternal, fetal and placental phenotype in late pregnancy in sheep.r This protocol induced maternal responses consistent with an allergic asthmatic phenotype.During pregnancy, lung resistance and the eosinophil influx induced by allergen challenges increased progressively in allergic sheep, and in late pregnancy airway smooth muscle content was greater in allergic than control ewes.r Effects on fetal growth and development were consistent with those of maternal asthma in humans. Maternal allergic asthma decreased relative fetal weight by 12%, reduced fetal lung expression of surfactant protein B, and altered placental morphology.r This provides an animal model in which to identify mechanisms underlying fetal effects of maternal asthma in pregnancy, including fetal physiological responses to exacerbations, and to evaluate responses to clinically used treatments and novel interventions.Abstract Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ß147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (−12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than
Prenatal and early childhood exposures are implicated as causes of allergy, but the effects of intrauterine growth restriction on immune function and allergy are poorly defined. We therefore evaluated effects of experimental restriction of fetal growth on immune function and allergic sensitization in adolescent sheep. Immune function (circulating total red and white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and the antibody response to Clostridial vaccination) and responses to house dust mite (HDM) allergen and ovalbumin (OVA) antigen sensitization (specific total Ig, IgG1, and IgE antibodies, and cutaneous hypersensitivity) were investigated in adolescent sheep from placentally restricted (PR, n = 23) and control (n = 40) pregnancies. Increases in circulating HDM-specific IgE (P = 0.007) and OVA-specific IgE (P = 0.038) were greater in PR than control progeny. PR did not alter total Ig, IgG1, or IgM responses to either antigen. PR increased OVA-specific but not HDM-specific IgA responses in females only (P = 0.023). Multiple birth increased Ig responses to OVA in a sex-specific manner. PR decreased the proportion of positive cutaneous hypersensitivity responders to OVA at 24 h (P = 0.030) but had no effect on cutaneous responses to HDM. Acute wheal responses to intradermal histamine correlated positively with birth weight in singletons (P = 0.023). Intrauterine growth restriction may suppress inflammatory responses in skin downstream of IgE induction, without impairment in antibody responses to a nonpolysaccharide vaccine. Discord between cutaneous and IgE responses following sensitization suggests new mechanisms for prenatal allergy programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.