BackgroundHIV-1-infected elite controllers or suppressors (ES) maintain undetectable viral loads (< 50 copies/mL) without antiretroviral therapy. The mechanisms of suppression are incompletely understood. Modulation of HIV-1 replication by miRNAs has been reported, but the role of small RNAs in ES is unknown. Using samples from a well-characterized ES cohort, untreated viremic patients, and uninfected controls, we explored the PBMC miRNA profile and probed the relationships of miRNA expression, CD4+ T-cell counts, and viral load.ResultsmiRNA profiles, obtained using multiple acquisition, data processing, and analysis methods, distinguished ES and uninfected controls from viremic HIV-1-infected patients. For several miRNAs, however, ES and viremic patients shared similar expression patterns. Differentially expressed miRNAs included those with reported roles in HIV-1 latency (miR-29 family members, miRs -125b and -150). Others, such as miR-31 and miR-31*, had no previously reported connection with HIV-1 infection but were found here to differ significantly with uncontrolled HIV-1 replication. Correlations of miRNA expression with CD4+ T-cell count and viral load were found, and we observed that ES with low CD4+ T-cell counts had miRNA profiles more closely related to viremic patients than controls. However, expression patterns indicate that miRNA variability cannot be explained solely by CD4+ T-cell variation.ConclusionsThe intimate involvement of miRNAs in disease processes is underscored by connections of miRNA expression with the HIV disease clinical parameters of CD4 count and plasma viral load. However, miRNA profile changes are not explained completely by these variables. Significant declines of miRs-125b and -150, among others, in both ES and viremic patients indicate the persistence of host miRNA responses or ongoing effects of infection despite viral suppression by ES. We found no negative correlations with viral load in viremic patients, not even those that have been reported to silence HIV-1 in vitro, suggesting that the effects of these miRNAs are exerted in a focused, cell-type-specific manner. Finally, the observation that some ES with low CD4 counts were consistently related to viremic patients suggests that miRNAs may serve as biomarkers for risk of disease progression even in the presence of viral suppression.
Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8–6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative ‘sensitivity’ represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits.
Morphological variation among the viviparous sea snakes (Hydrophiinae), a clade of fully aquatic elapid snakes, includes an extreme “microcephalic” ecomorph that has a very small head atop a narrow forebody, while the hind body is much thicker (up to three times the forebody girth). Previous research has demonstrated that this morphology has evolved at least nine times as a consequence of dietary specialization on burrowing eels, and has also examined morphological changes to the vertebral column underlying this body shape. The question addressed in this study is what happens to the skull during this extreme evolutionary change? Here we use X-ray micro-computed tomography and geometric morphometric methods to characterize cranial shape variation in 30 species of sea snakes. We investigate ontogenetic and evolutionary patterns of cranial shape diversity to understand whether cranial shape is predicted by dietary specialization, and examine whether cranial shape of microcephalic species may be a result of heterochronic processes. We show that the diminutive cranial size of microcephalic species has a convergent shape that is correlated with trophic specialization to burrowing prey. Furthermore, their cranial shape is predictable for their size and very similar to that of juvenile individuals of closely related but non-microcephalic sea snakes. Our findings suggest that heterochronic changes (resulting in pedomorphosis) have driven cranial shape convergence in response to dietary specializations in sea snakes.
IntroductionThe use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals.Materials and MethodsA set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed.ResultsNone of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR-145 correlated with nadir CD4+ T cell count.DiscussionNo associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.