Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8–6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative ‘sensitivity’ represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits.
Marine snakes represent the most speciose group of marine reptiles and are a significant component of reef and coastal ecosystems in tropical oceans. Research on this group has historically been challenging due to the difficulty in capturing, handling, and keeping these animals for field-and lab-based research. Inexplicable declines in marine snake populations across global hotspots have highlighted the lack of basic information on this group and elevated multiple species as conservation priorities. With the increased interest in research on marine snakes, we conducted a systematic survey of experts to identify twenty key questions that can direct future research. These questions are framed across a wide array of scientific fields to produce much-needed information relevant to the conservation and management of marine snakes.
Diffusible iodine‐based contrast‐enhanced computed tomography (diceCT) visualizes soft tissue from micro‐CT (µCT) scans of specimens to uncover internal features and natural history information without incurring physical damage via dissection. Unlike hard‐tissue imaging, taxonomic sampling within diceCT datasets is currently limited. To initiate best practices for diceCT in a nonmodel group, we outline a guide for staining and high‐throughput µCT scanning in snakes. We scanned the entire body and one region of interest (i.e., head) for 23 specimens representing 23 species from the clades Aniliidae, Dipsadinae, Colubrinae, Elapidae, Lamprophiidae, and Viperidae. We generated 82 scans that include 1.25% Lugol's iodine stained (soft tissue) and unstained (skeletal) data for each specimen. We found that duration of optimal staining time increased linearly with body size; head radius was the best indicator. Postreconstruction of scans, optimal staining was evident by evenly distributed grayscale values and clear differentiation among soft‐tissue anatomy. Under and over stained specimens produced poor contrast among soft tissues, which was often exacerbated by user bias during “digital dissections” (i.e., segmentation). Regardless, all scans produced usable data from which we assessed a range of downstream analytical applications within ecology and evolution (e.g., predator‐prey interactions, life history, and morphological evolution). Ethanol destaining reversed the known effects of iodine on the exterior appearance of physical specimens, but required substantially more time than reported for other destaining methods. We discuss the feasibility of implementing diceCT techniques for a new user, including approximate financial and temporal commitments, required facilities, and potential effects of staining on specimens. We present the first high‐throughput workflow for full‐body skeletal and diceCT scanning in snakes, which can be generalized to any elongate vertebrates, and increases publicly available diceCT scans for reptiles by an order of magnitude.
Dermal phototaxis has been reported in a few aquatic vertebrate lineages spanning fish, amphibians and reptiles. These taxa respond to light on the skin of their elongate hind‐bodies and tails by withdrawing under cover to avoid detection by predators. Here, we investigated tail phototaxis in sea snakes (Hydrophiinae), the only reptiles reported to exhibit this sensory behaviour. We conducted behavioural tests in 17 wild‐caught sea snakes of eight species by illuminating the dorsal surface of the tail and midbody skin using cold white, violet, blue, green and red light. Our results confirmed phototactic tail withdrawal in the previously studied Aipysurus laevis, revealed this trait for the first time in A. duboisii and A. tenuis, and suggested that tail photoreceptors have peak spectral sensitivities between blue and green light (457–514 nm). Based on these results, and an absence of photoresponses in five Aipysurus and Hydrophis species, we tentatively infer that tail phototaxis evolved in the ancestor of a clade of six Aipysurus species (comprising 10% of all sea snakes). Quantifying tail damage, we found that the probability of sustaining tail injuries was not influenced by tail phototactic ability in snakes. Gene profiling showed that transcriptomes of both tail skin and body skin lacked visual opsins but contained melanopsin (opn4x) in addition to key genes of the retinal regeneration and phototransduction cascades. This work suggests that a nonvisual photoreceptor (e.g., Gq rhabdomeric) signalling pathway underlies tail phototaxis, and provides candidate gene targets for future studies of this unusual sensory innovation in reptiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.