Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC–regulated gene expression. In AR-SV–driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. Significance: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies. See related commentary by Rasool et al., p. 1011. This article is highlighted in the In This Issue feature, p. 995
Topical application of tumors with the TLR7 agonist imiquimod is an effective adjunct treatment for a range of primary dermatological cancers. However, for therapy to be effective against a broad range of solid tumor types, it must promote a strong systemic antitumor response that targets metastases in addition to primary tumor. We therefore investigated the potential of locally delivered imiquimod to stimulate an effective systemic antitumor response in a murine model of malignant mesothelioma (AB1-HA) with primary and distal tumors (dual tumor). Persistent delivery of imiquimod into primary tumor significantly retarded tumor growth in all treated mice compared with vehicle control. This local antitumor immune response required both CD8 T cells and NK cells, but not CD4 T cells, and was reliant on type I IFN induction. In vivo CTL studies and Ly6A/E staining of lymphocytes suggested that local imiquimod treatment had indeed induced a systemic, Ag-specific CD8 response. However, notably this response was not sufficient to retard the growth of an untreated distal tumor. Because local imiquimod treatment did not induce significant CD4 T cell responses, we investigated the efficacy of combining imiquimod with agonistic CD40 Ab (as a surrogate for CD4 T cell help). Combination of locally delivered imiquimod with systemic anti-CD40 immunotherapy not only significantly enhanced the local antitumor response, with 30% complete resolution, but it was also effective at significantly retarding growth of distal tumor. These results demonstrate that antitumor responses induced by locally delivered TLR7 agonists can be harnessed systemically for treating distal tumor.
Tumor cell death potentially engages with the immune system. However, the efficacy of anti-tumor chemotherapy may be limited by tumor-driven immunosuppression, e.g., through CD25+ regulatory T cells. We addressed this question in a mouse model of mesothelioma by depleting or reconstituting CD25+ regulatory T cells in combination with two different chemotherapeutic drugs. We found that the efficacy of cyclophosphamide to eradicate established tumors, which has been linked to regulatory T cell depletion, was negated by adoptive transfer of CD25+ regulatory T cells. Analysis of post-chemotherapy regulatory T cell populations revealed that cyclophosphamide depleted cycling (Ki-67(hi)) T cells, including foxp3+ regulatory CD4+ T cells. Ki-67(hi) CD4+ T cells expressed increased levels of two markers, TNFR2 and ICOS, that have been associated with a maximally suppressive phenotype according to recently published studies. This suggest that cyclophosphamide depletes a population of maximally suppressive regulatory T cells, which may explain its superior anti-tumor efficacy in our model. Our data suggest that regulatory T cell depletion could be used to improve the efficacy of anti-cancer chemotherapy regimens. Indeed, we observed that the drug gemcitabine, which does not deplete cycling regulatory T cells, eradicates established tumors in mice only when CD25+ CD4+ T cells are concurrently depleted. Cyclophosphamide could be used to achieve regulatory T cell depletion in combination with chemotherapy.
Effective antitumor CD8 T cell responses may be activated by directly targeting the innate immune system within tumors. We investigated this response by injecting a range of TLR agonists into established tumors using a mouse model of malignant mesothelioma stably transduced with the hemagglutinin (HA) gene as a marker Ag (AB1-HA). Persistent delivery of the dsRNA mimetic poly(I:C) into established AB1-HA tumors resulted in complete tumor resolution in 40% of mice, with the remaining mice also showing a significant delay in tumor progression. Experiments in athymic nude mice along with CD8 depletion and IFN-αβ blocking studies revealed that tumor resolution required both CD8 T cells and type I IFN induction, and was associated with local changes in MHC class I expression. Surprisingly, however, tumor resolution was not associated with systemic dissemination or tumor infiltration of effector CD8 T cells. Instead, the antitumor response was critically dependent on the reactivation of tumor-resident CD8 T cell responses. These studies suggest that, once reactivated, pre-existing local CD8 T cell responses are sufficient to resolve established tumors and that in situ type I IFN is a determining factor.
BackgroundAnti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy.Methods and FindingsWe used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-α/β response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-γ and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies.ConclusionThe data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.