We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.
The classical assumption in generalized linear measurement error models (GLMEMs) is that measurement errors (MEs) for covariates are distributed as a fully parametric distribution such as the multivariate normal distribution. This paper uses a centered Dirichlet process mixture model to relax the fully parametric distributional assumption of MEs, and develops a semiparametric Bayesian approach to simultaneously obtain Bayesian estimations of parameters and covariates subject to MEs by combining the stick-breaking prior and the Gibbs sampler together with the Metropolis-Hastings algorithm. Two Bayesian case-deletion diagnostics are proposed to identify influential observations in GLMEMs via the Kullback-Leibler divergence and Cook's distance. Computationally feasible formulae for evaluating Bayesian casedeletion diagnostics are presented. Several simulation studies and a real example are used to illustrate our proposed methodologies.
In the development of simplex mixed-effects models, random effects in these mixed-effects models are generally distributed in normal distribution. The normality assumption may be violated in an analysis of skewed and multimodal longitudinal data. In this paper, we adopt the centered Dirichlet process mixture model (CDPMM) to specify the random effects in the simplex mixed-effects models. Combining the block Gibbs sampler and the Metropolis–Hastings algorithm, we extend a Bayesian Lasso (BLasso) to simultaneously estimate unknown parameters of interest and select important covariates with nonzero effects in semiparametric simplex mixed-effects models. Several simulation studies and a real example are employed to illustrate the proposed methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.