Spermatozoa must translate information from their environment and the egg to achieve fertilization in sexually reproducing animals. These tasks require decoding a variety of signals in the form of intracellular Ca(2+) changes. As TRP channels constitute a large family of versatile multi-signal transducers, they are interesting subjects in which to explore their possible participation in sperm function. Here, we review the evidence for their presence and involvement in sperm motility, maturation, and the acrosome reaction, an exocytotic process required for sperm-egg fusion. Since store-operated Ca(2+) entry (SOCE) has been proposed to play an important role in these three functions, the main proteins responsible for this transport (STIM and ORAI) and their interaction with TRPs are also discussed. Improving our tools to solve infertility, improve animal breeding, and preserve biodiversity requires a better understanding of how Ca(2+) is regulated in spermatozoa.
Spermatozoa are male reproductive cells especially designed to reach, recognize and fuse with the egg. To perform these tasks, sperm cells must be prepared to face a constantly changing environment and to overcome several physical barriers. Being in essence transcriptionally and translationally silent, these motile cells rely profoundly on diverse signaling mechanisms to orient themselves and swim in a directed fashion, and to contend with challenging environmental conditions during their journey to find the egg. In particular, Ca(2+)-mediated signaling is pivotal for several sperm functions: activation of motility, capacitation (a complex process that prepares sperm for the acrosome reaction) and the acrosome reaction (an exocytotic event that allows sperm-egg fusion). The use of fluorescent dyes to track intracellular fluctuations of this ion is of remarkable importance due to their ease of application, sensitivity, and versatility of detection. Using one single dye-loading protocol we utilize four different fluorometric techniques to monitor sperm Ca(2+) dynamics. Each technique provides distinct information that enables spatial and/or temporal resolution, generating data both at single cell and cell population levels.
Prostate cancer cells are responsive to adrenergic and thyroid stimuli. It is well established that β-adrenergic activation (protein kinase A [PKA]/cAMP response element binding protein [CREB]) promotes cancer progression, but the role of thyroid hormones is poorly understood. We analyzed the effects of β-adrenergic stimulation (isoproterenol [ISO]) and/or thyroid hormone on neuroendocrine (NE) differentiation and cell invasion, using in vivo (LNCaP tumor) and in vitro models (LNCaP and DU145 human cells). Nude mice were inoculated with LNCaP cells and were treated for 6 wks with ISO (200 μg/d), triiodothyronine (T3, 2.5 μg/d) or both. ISO alone reduced tumor growth but increased tumor expression of cAMP response element (CRE)-dependent genes (real-time polymerase chain reaction, chromogranin A, neuron-specific enolase, survivin, vascular endothelial growth factor [VEGF], urokinase plasmin activator [uPA] and metalloproteinase-9 [MMP-9]) and some proteins related to NE differentiation and/or invasiveness (synaptophysin, VEGF, pCREB). T3 reduced tumor growth and prevented the overexpression of ISO-stimulated factors through a pCREB-independent mechanism. In low invasive LNCaP cells, 50 μmol/L ISO or 100 nmol/L thyroxine (T4) induced the acquisition of NE-like morphology (phase-contrast microscopy), increased VEGF secretion (ELISA) and invasive capacity (Transwell assay), but no synergistic effects were observed after the coadministration of ISO + T4. In contrast, 10 nmol/L T3 alone had no effect, but it prevented the NE-like morphology and invasiveness stimulated by ISO. None of these treatments had any effect on highly invasive DU145 cells. In summary, this study showed that ISO and T4 increase cancer progression, and T3 attenuates ISO-stimulated progression. Further studies are required to determine if changes in the ratio of T4/T3 could be relevant for prostate cancer progression.
a b s t r a c tCatsper is a Ca 2+ permeable channel required for sperm hyperactivation. In spite of its central role in male fertility, the transcriptional mechanisms that regulate Catsper1 expression are ill defined. In this work, we describe the identification and characterization of important regulatory elements in the murine Catsper1 gene proximal promoter. Four transcription start sites and three functional Sox-binding sites were identified in the Catsper1 promoter. Interestingly, transcription factors Sox5 and Sox9 caused a significant increase in transactivation of the Catsper1 promoter in heterologous systems, and chromatin immunoprecipitation assays showed that both transcription factors interact with the Catsper1 promoter in vivo. These results provide new insights into the molecular mechanisms that control Catsper channel expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.