The international health crisis caused by Covid-19, more serious than those caused by SARS, MERS, influenza A, and Ebola, poses an unprecedented challenge for all institutions around the world in combating the infodemic. The main objective of this work is to analyze institutional behavior through Twitter to determine whether it is possible to deduce an effective institutional online crisis communication model that is applicable in wider contexts. In this sense, a quantitative methodological design is established based on content analysis performed on a simple of 995 tweets from the official Twitter accounts of institutions in charge of managing the health crisis during the first state of alarm in Spain: @sanidadgob (483 tweets), @mitmagob (154 tweets), @defensagob (263 tweets), and @interiorgob (95 tweets). The results illustrate a predominance of empathetic and security-related messages (60.40%); a stable distribution of tweets per day, with 88.74% of them published between 10:00 and 20:59; a moderate use of audiovisual resources (32.26%) with a very informative approach (96.18%); a few significant differences according to the chi-squared statistic with respect to the format (χ2(12) = 606.066; p < 0.001) and approach (χ2(3) = 36.084; p < 0.001) depending on the accounts analyzed; and a substantial level of engagement with the Spanish Ministry of Health’s account (68.96%). These results demonstrate that Twitter allows the application of an online institutional communication model that is easily transferable to an international context, suggesting a public relations strategy based on information transparency and constant information flow. Resumen La crisis sanitaria internacional provocada por la Covid-19, más grave que las provocadas por el SARS, el MERS, la Gripe A y el Ébola, supone un desafío sin precedentes para las instituciones de todo el mundo. El objetivo principal de este trabajo es analizar el comportamiento institucional a través de Twitter para determinar si es posible inferir un modelo eficaz de comunicación institucional de crisis online de aplicación en contextos más amplios. En este sentido, se establece un diseño metodológico cuantitativo, sustentado en el análisis de contenido sobre un corpus de 995 mensajes emitidos durante el primer estado de alarma por las cuentas oficiales de Twitter de las instituciones oficiales al cargo de la gestión de la crisis sanitaria de la Covid-19 en España: @sanidadgob (483 tweets), @mitmagob (154 tweets), @defensagob (263 tweets) e @interiorgob (95 tweets). Los resultados muestran un predominio de mensajes de empatía y seguridad (60,40%); una distribución estable de tweets por día, concentrándose el 88,74% de los mismos entre las 10:00 y las 20:59 horas; un uso comedido de recursos audiovisuales (32,26%) con un enfoque eminentemente informativo (96,18%); diferencias significativas según el estadístico chi-cuadrado con respecto al formato (χ2(12) = 606,066; p < 0,001) y el enfoque (χ2(3) = 36,084; p < 0,001) en función de la cuenta analizada, y una destacada tasa de engagement adscrita al Ministerio de Sanidad (68,96%). Estos resultados evidencian que Twitter permite aplicar un modelo de comunicación institucional online, de fácil transferencia al contexto internacional, que sugiere una estrategia de relaciones públicas sustentada en la transparencia informativa y el goteo informativo constante.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.