Background Researchers increasingly use intraoperative muscle biopsy to investigate mechanisms of skeletal muscle atrophy in patients with cancer. Muscles have been assessed for morphological, cellular, and biochemical features. The aim of this study was to conduct a state-of-the-science review of this literature and, secondly, to evaluate clinical and biological variation in biopsies of rectus abdominis (RA) muscle from a cohort of patients with malignancies. Methods Literature was searched for reports on muscle biopsies from patients with a cancer diagnosis. Quality of reports and risk of bias were assessed. Data abstracted included patient characteristics and diagnoses, sample size, tissue collection and biobanking procedures, and results. A cohort of cancer patients (n = 190, 88% gastrointestinal malignancies), who underwent open abdominal surgery as part of their clinical care, consented to RA biopsy from the site of incision. Computed tomography (CT) scans were used to quantify total abdominal muscle and RA cross-sectional areas and radiodensity. Biopsies were assessed for muscle fibre area (μm 2 ), fibre types, myosin heavy chain isoforms, and expression of genes selected for their involvement in catabolic pathways of muscle. Results Muscle biopsy occurred in 59 studies (total N = 1585 participants). RA was biopsied intraoperatively in 40 studies (67%), followed by quadriceps (26%; percutaneous biopsy) and other muscles (7%). Cancer site and stage, % of male participants, and age were highly variable between studies. Details regarding patient medical history and biopsy procedures were frequently absent. Lack of description of the population(s) sampled and low sample size contributed to low quality and risk of bias. Weight-losing cases were compared with weight stable cancer or healthy controls without considering a measure of muscle mass in 21 out of 44 studies. In the cohort of patients providing biopsy for this study, 78% of patients had preoperative CT scans and a high proportion (64%) met published criteria for sarcopenia. Fibre type distribution in RA was type I (46% ± 13), hybrid type I/IIA (1% ± 1), type IIA (36% ± 10), hybrid type IIA/D (15% ± 14), and type IID (2% ± 5). Sexual dimorphism was prominent in RA CT cross-sectional area, mean fibre cross-sectional area, and in expression of genes associated with muscle growth, apoptosis, and inflammation (P < 0.05). Medical history revealed multiple co-morbid conditions and medications. Conclusions Continued collaboration between researchers and cancer surgeons enables a more complete understanding of mechanisms of cancer-associated muscle atrophy. Standardization of biobanking practices, tissue manipulation, patient characterization, and classification will enhance the consistency, reliability, and comparability of future studies.
Background Low muscle radiodensity is associated with mortality in a variety of cancer types. Biochemical and morphological correlates are unknown. We aimed to evaluate triglyceride (TG) content and location as a function of computed tomography (CT)‐derived measures of skeletal muscle radiodensity in cancer patients. Methods Rectus abdominis (RA) biopsies were collected during cancer surgery from 75 patients diagnosed with cancer. Thin‐layer chromatography and gas chromatography were used for quantification of TG content of the muscle. Axial CT images of lumbar vertebra were used to measure muscle radiodensity. Oil Red O staining was used to determine the location of neutral lipids in frozen muscle sections. Results There was wide variation in RA radiodensity in repeated measures (CV% ranged from 3 to 55% based on 10 serial images) as well as within one slice (CV% ranged from 6 to 61% based on 10 subregions). RA radiodensity and total lumbar muscle radiodensity were inversely associated with TG content of RA (r = −0.396, P < 0.001, and r = −0.355, P = 0.002, respectively). Of the total percentage area of muscle staining positive for neutral lipid, 54 ± 17% was present as extramyocellular lipids (range 23.5–77.8%) and 46 ± 17% (range 22.2–76.5%) present as intramyocellular lipid droplets. Conclusions Repeated measures revealed wide variation in radiodensity of RA muscle, both vertically and horizontally. Low muscle radiodensity reflects high level of TG in patients with cancer. Non‐uniform distribution of intramyocellular and extramyocellular lipids was evident using light microscopy. These results warrant investigation of mechanisms resulting in lipid deposition in muscles of cancer patients.
Background Inflammation is a recognized contributor to muscle wasting. Research in injury and myopathy suggests that interactions between the skeletal muscle and immune cells confer a pro-inflammatory environment that influences muscle loss through several mechanisms; however, this has not been explored in the cancer setting. This study investigated the local immune environment of the muscle by identifying the phenotype of immune cell populations in the muscle and their relationship to muscle mass in cancer patients. Methods Intraoperative muscle biopsies were collected from cancer patients (n = 30, 91% gastrointestinal malignancies). Muscle mass was assessed histologically (muscle fiber cross-sectional area, CSA; μm2) and radiologically (lumbar skeletal muscle index, SMI; cm2/m2 by computed tomography, CT). T cells (CD4 and CD8) and granulocytes/phagocytes (CD11b, CD14, and CD15) were assessed by immunohistochemistry. Microarray analysis was conducted in the muscle of a second cancer patient cohort. Results T cells (CD3+), granulocytes/phagocytes (CD11b+), and CD3−CD4+ cells were identified. Muscle fiber CSA (μm2) was positively correlated (Spearman’s r = > 0.45; p = < 0.05) with the total number of T cells, CD4, and CD8 T cells and granulocytes/phagocytes. In addition, patients with the smallest SMI exhibited fewer CD8 T cells within their muscle. Consistent with this, further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively associated (Pearson’s r = ≥ 0.5; p = <0.0001) with key genes within muscle catabolic pathways for signaling (ACVR2B), ubiquitin proteasome (FOXO4, TRIM63, FBXO32, MUL1, UBC, UBB, UBE2L3), and apoptosis/autophagy (CASP8, BECN1, ATG13, SIVA1). Conclusion The skeletal muscle immune environment of cancer patients is comprised of immune cell populations from the adaptive and innate immunity. Correlations of T cells, granulocyte/phagocytes, and CD3−CD4+ cells with muscle mass measurements indicate a positive relationship between immune cell numbers and muscle mass status in cancer patients. Further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively correlated with components of muscle catabolism.
Emerging studies are reporting associations between skeletal muscle abnormalities and survival in cancer patients. Cancer prognosis is associated with depletion of essential fatty acids in erythrocytes and plasma in humans. However the relationship between skeletal muscle membrane fatty acid composition and survival is unknown. This study investigates the relationship between fatty acid content of phospholipids in skeletal muscle and survival in cancer patients. Rectus abdominis biopsies were collected during cancer surgery from 35 patients diagnosed with cancer. Thin-layer and gas chromatography were used for quantification of phospholipid fatty acids. Cutpoints for survival were defined using optimal stratification. Median survival was between 450 and 500 days when patients had arachidonic acid (AA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in muscle phospholipid below the cut-point compared to 720–800 days for patients above. Cox regression analysis revealed that low amounts of AA, EPA and DHA are risk factors for death. The risk of death remained significant for AA [HR 3.5 (1.11–10.87), p = 0.03], EPA [HR 3.92 (1.1–14.0), p = 0.04] and DHA [HR 4.08 (1.1–14.6), p = 0.03] when adjusted for sex. Lower amounts of essential fatty acids in skeletal muscle membrane is a predictor of survival in cancer patients. These results warrant investigation to restore bioactive fatty acids in people with cancer.
Background: Emerging studies are reporting associations between skeletal muscle abnormalities and survival in cancer patients. Cancer prognosis is associated with depletion of essential fatty acids in membrane of blood plasma and serum in humans, however the relationship between skeletal muscle membrane fatty acid composition and survival is unknown. This study investigates the relationship between fatty acid content of phospholipids in skeletal muscle and survival in cancer patients.Methods: Rectus abdominis biopsies were collected during cancer surgery from 35 patients diagnosed with cancer. Thin-layer and gas chromatography were used for quantification of phospholipid fatty acid content of the muscle. Cut-points for fatty acids were established using optimal stratification.Results: Median survival was between 450-500 days when patients had arachidonic acid (AA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in muscle phospholipid above the cut-point compared to 720-800 days for patients below. Cox regression analysis revealed that low amounts of AA, EPA and DHA are risk factors for death. The risk of death remained significant for AA [HR 3.5 (1.11-10.87), p=0.03], EPA [HR 3.92 (1.1-14.0), p=0.04] and DHA [HR 4.08 (1.1-14.6), p=0.03] when adjusted for sex. Conclusion: Lower amount of essential fatty acids in skeletal muscle membrane is predictor of survival in cancer patients. These results warrant investigation to restore depletion of bioactive fatty acids in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.