We propose a new method to visualize and detect shape outliers in samples of curves. In functional data analysis, we observe curves defined over a given real interval and shape outliers may be defined as those curves that exhibit a different shape from the rest of the sample. Whereas magnitude outliers, that is, curves that lie outside the range of the majority of the data, are in general easy to identify, shape outliers are often masked among the rest of the curves and thus difficult to detect. In this article, we exploit the relationship between two measures of depth for functional data to help to visualize curves in terms of shape and to develop an algorithm for shape outlier detection. We illustrate the use of the visualization tool, the outliergram, through several examples and analyze the performance of the algorithm on a simulation study. Finally, we apply our method to assess cluster quality in a real set of time course microarray data.
Nowadays, across the most important problems faced by health centers are those caused by the existence of patients who do not attend their appointments. Among others, these patients cause loss of revenue to the health centers and increase the patients’ waiting list. In order to tackle these problems, several scheduling systems have been developed. Many of them require predicting whether a patient will show up for an appointment. However, obtaining these estimates accurately is currently a challenging problem. In this work, a systematic review of the literature on predicting patient no-shows is conducted aiming at establishing the current state-of-the-art. Based on a systematic review following the PRISMA methodology, 50 articles were found and analyzed. Of these articles, 82% were published in the last 10 years and the most used technique was logistic regression. In addition, there is significant growth in the size of the databases used to build the classifiers. An important finding is that only two studies achieved an accuracy higher than the show rate. Moreover, a single study attained an area under the curve greater than the 0.9 value. These facts indicate the difficulty of this problem and the need for further research.
Parametric nonlinear mixed effects models (NLMEs) are now widely used in biometrical studies, especially in pharmacokinetics research and HIV dynamics models, due to, among other aspects, the computational advances achieved during the last years. However, this kind of models may not be flexible enough for complex longitudinal data analysis. Semiparametric NLMEs (SNMMs) have been proposed by Ke and Wang (2001). These models are a good compromise and retain nice features of both parametric and nonparametric models resulting in more flexible models than standard parametric NLMEs. However, SNMMs are complex models for which estimation still remains a challenge. The estimation procedure proposed by Ke and Wang (2001) is based on a combination of log-likelihood approximation methods for parametric estimation and smoothing splines techniques for nonparametric estimation. In this work, we propose new estimation strategies in SNMMs. On the one hand, we use the Stochastic Approximation version of EM algorithm (Delyon et al., 1999) to obtain exact ML and REML estimates of the fixed effects and variance components. On the other hand, we propose a LASSO-type method to estimate the unknown nonlinear function. We derive oracle inequalities for this nonparametric estimator. We combine the two approaches in a general estimation procedure that we illustrate with simulated and real data.
This paper deals with parameter estimation in pair-hidden Markov models. We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model is biologically motivated and therefore naturally leads to restrictions on the parameter space. Existence of two different information divergence rates is established and a divergence property is shown under additional assumptions. This yields consistency for the parameter in parametrization schemes for which the divergence property holds. Simulations illustrate different cases which are not covered by our results. Copyright 2006 Board of the Foundation of the Scandinavian Journal of Statistics..
We propose a classification method for longitudinal data. The Bayes classifier is classically used to determine a classification rule where the underlying density in each class needs to be well modeled and estimated. This work is motivated by a real dataset of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. The proposed model, which is a semiparametric linear mixed-effects model (SLMM), is a particular case of the semiparametric nonlinear mixed-effects class of models (SNMM) in which finite dimensional (fixed effects and variance components) and infinite dimensional (an unknown function) parameters have to be estimated. In SNMM's maximum likelihood estimation is performed iteratively alternating parametric and nonparametric procedures. However, if one can make the assumption that the random effects and the unknown function interact in a linear way, more efficient estimation methods can be used. Our contribution is the proposal of a unified estimation procedure based on a penalized EM-type algorithm. The Expectation and Maximization steps are explicit. In this latter step, the unknown function is estimated in a nonparametric fashion using a lasso-type procedure. A simulation study and an application on real data are performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.