Ursolic acid is a pentacyclic triterpenoid found in several plants. Despite its initial use as a pharmacologically inactive emulsifier in pharmaceutical, cosmetic and food industries, several biological activities have been reported for this compound so far, including anti-tumoural, anti-diabetic, cardioprotective and hepatoprotective properties. The biological effects of ursolic acid have been evaluated in vitro, in different cell types and against several toxic insults (i.e. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, amyloid-β peptides, kainic acid and others); in animal models of brain-related disorders (Alzheimer disease, Parkinson disease, depression, traumatic brain injury) and ageing; and in clinical studies with cancer patients and for muscle atrophy. Most of the protective effects of ursolic acid are related to its ability to prevent oxidative damage and excessive inflammation, common mechanisms associated with multiple brain disorders. Additionally, ursolic acid is capable of modulating the monoaminergic system, an effect that might be involved in its ability to prevent mood and cognitive dysfunctions associated with neurodegenerative and psychiatric conditions. This review presents and discusses the available evidence of the possible beneficial effects of ursolic acid for the management of neurodegenerative and psychiatric disorders. We also discuss the chemical features, major sources and potential limitations of the use of ursolic acid as a pharmacological treatment for brain-related diseases.
The benefits of creatine supplementation have been reported in a broad range of central nervous systems diseases, including depression. A previous study from our group demonstrated that creatine produces an antidepressant-like effect in the tail suspension test (TST), a predictive model of antidepressant activity. Since depression is associated with a dysfunction of the adenosinergic system, we investigated the involvement of adenosine A 1 and A 2A receptors in the antidepressant-like effect of creatine in the TST. The anti-immobility effect of creatine (1 mg/kg, po) or ketamine (a fast-acting antidepressant, 1 mg/kg, ip) in the TST was prevented by pretreatment of mice with caffeine (3 mg/kg, ip, nonselective adenosine receptor antagonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (2 mg/kg, ip, selective adenosine A 1 receptor antagonist), and 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-ylamino]ethyl)-phenol (ZM241385) (1 mg/kg, ip, selective adenosine A 2A receptor antagonist). In addition, the combined administration of subeffective doses of creatine and adenosine (0.1 mg/kg, ip, nonselective adenosine receptor agonist) or inosine (0.1 mg/kg, ip, nucleoside formed by the breakdown of adenosine) reduced immobility time in the TST. Moreover, the administration of subeffective doses of creatine or ketamine combined with N-6-cyclohexyladenosine (CHA) (0.05 mg/kg, ip, selective adenosine A 1 receptor agonist), N-6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)ethyl]adenosine (DPMA) (0.1 mg/kg, ip, selective adenosine A 2A receptor agonist), or dipyridamole (0.1 μg/mouse, icv, adenosine transporter inhibitor) produced a synergistic antidepressant-like effect in the TST. These results indicate that creatine, similarly to ketamine, exhibits antidepressant-like effect in the TST probably mediated by the activation of both adenosine A 1 and A 2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.
The modulation of N-methyl-D-aspartate receptor (NMDAR) and L-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and L-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/L-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), D-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), L-arginine (750 mg/kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by L-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.
The neural crest (NC) is composed of highly multipotent precursor cells able to differentiate into both neural and mesenchymal phenotypes. Until now, most studies focusing on NC cell differentiation have been performed with traditional two-dimensional (2D) cell culture systems. However, such culture systems do not reflect the complex three-dimensional (3D) microenvironments of in vivo NC cells. To address this limitation, we have developed a method of Matrigel™ coating to create 2D and 3D microenvironments in the same culture well. When we performed cultures of trunk neural crest cells (TNCCs) on three different lots of basement membrane matrix (Matrigel™), we observed that all analyzed Matrigel™ lots were equally efficient in allowing the appearance of glial cells, neurons, melanocytes, smooth muscle cells and chondrocytes. We further observed that chondrocytes were found predominantly in the 3D microenvironment, whereas smooth muscle cells were almost exclusively located in the 2D microenvironment. Glial cells were present in both environments, but with broader quantities on the 2D surface. Melanocytes and neurons were equally distributed in both 2D and 3D microenvironments, but with distinct morphologies. It is worth noting the higher frequency of chondrocytes detected in this study using the 3D Matrigel™ microenvironment compared to previous reports of chondrogenesis obtained from TNCCs on traditional 2D cultures. In conclusion, Matrigel™ represents an attractive scaffold to study NC multipotentiality and differentiation, since it permits the appearance of the major NC phenotypes.
Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.