Uncertainty is an inherent part of knowledge, and yet in an era of contested expertise, many shy away from openly communicating their uncertainty about what they know, fearful of their audience's reaction. But what effect does communication of such epistemic uncertainty have? Empirical research is widely scattered across many disciplines. This interdisciplinary review structures and summarizes current practice and research across domains, combining a statistical and psychological perspective. This informs a framework for uncertainty communication in which we identify three objects of uncertainty—facts, numbers and science—and two levels of uncertainty: direct and indirect. An examination of current practices provides a scale of nine expressions of direct uncertainty. We discuss attempts to codify indirect uncertainty in terms of quality of the underlying evidence. We review the limited literature about the effects of communicating epistemic uncertainty on cognition, affect, trust and decision-making. While there is some evidence that communicating epistemic uncertainty does not necessarily affect audiences negatively, impact can vary between individuals and communication formats. Case studies in economic statistics and climate change illustrate our framework in action. We conclude with advice to guide both communicators and future researchers in this important but so far rather neglected field.
Although many macroeconomic series such as US real output growth are sampled quarterly, many potentially useful predictors are observed at a higher frequency. We look at whether a recently developed mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth and inflation. We carry out a number of related real-time forecast comparisons using various indicators as explanatory variables. We find that MIDAS model forecasts of output growth are more accurate at horizons less than one quarter using coincident indicators; that MIDAS models are an effective way of combining information from multiple indicators;and that the forecast accuracy of the unemployment-rate Phillips curve for inflation is enhanced using the MIDAS approach.Keywords: Data frequency, multiple predictors, combination, real-time forecasting.JEL classification: C51, C53. * We are grateful to the Editor, an Associate Editor, and two anonymous referees for helpful comments and guidance. We also acknowledge helpful comments from participants at the International Symposium of Forecasting Macroeconomic Forecasting with Mixed Frequency Data:Forecasting US output growth and inflation AbstractAlthough many macroeconomic series such as US real output growth are sampled quarterly, many potentially useful predictors are observed at a higher frequency. We look at whether a recently developed mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth and inflation. We carry out a number of related real-time forecast comparisons using various indicators as explanatory variables. We find that MIDAS model forecasts of output growth are more accurate at horizons less than one quarter using coincident indicators; that MIDAS models are an effective way of combining information from multiple indicators; and that the forecast accuracy of the unemployment-rate Phillips curve for inflation is enhanced using the MIDAS approach.
SUMMARYWe evaluate the predictive power of leading indicators for output growth at horizons up to 1 year. We use the MIDAS regression approach as this allows us to combine multiple individual leading indicators in a parsimonious way and to directly exploit the information content of the monthly series to predict quarterly output growth. When we use real-time vintage data, the indicators are found to have significant predictive ability, and this is further enhanced by the use of monthly data on the quarter at the time the forecast is made.
Many macroeconomic series, such as U.S. real output growth, are sampled quarterly, although potentially useful predictors are often observed at a higher frequency. We look at whether a mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth. The MIDAS specification used in the comparison uses a novel way of including an autoregressive term. We find that the use of monthly data on the current quarter leads to significant improvement in forecasting current and next quarter output growth, and that MIDAS is an effective way to exploit monthly data compared with alternative methods.
SUMMARY We examine how the accuracy of real‐time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest‐available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple‐vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.