In the Ecuadorian Amazonia, there is a concern about the presence of high concentrations of cadmium (Cd) in rivers and sediments because of changes in land use and anthropogenic activities, e.g., mining and oil exploitation. Hence, the research related to water treatment processes to meet environmental standards has gained relevance. The use of biochar (BC) as adsorbent is considered a promising and low-cost alternative to improve the water quality in developing countries. In this work, lignocellulosic wastes from Guadua angustifolia were transformed through thermochemical treatments, into a promising carbonaceous material, such as BC. BC samples were prepared by pyrolysis (termed pyrochar, PC) and hydrothermal carbonization (termed hydrochar, HC). Their physicochemical properties were correlated with the Cd adsorption removal performance, analyzing the effect of adsorbent dosage, initial solution pH, adsorption kinetics and adsorption isotherms. HC showed the highest Cd adsorption performance, due to the presence of a higher number of oxygenated functional groups, as confirmed by FTIR, XPS and Raman spectroscopy. This research has proposed a sustainable alternative for the recovery of an available waste, contributing to mitigate the effects of the presence of metals on the health and economy of the most vulnerable sectors of society.
The photocatalytic oxidation of cyanide by titanium dioxide (TiO2) supported on activated carbon (AC) was evaluated in a continuous flow UV photo-reactor. The continuous photo-reactor was made of glass and covered with a wood box to isolate the fluid of external conditions. The TiO2-AC synthesized by the impregnation of TiO2 on granular AC composites was characterized by inductively coupled plasma optical emission spectrometry (ICP-OES), Scanning Electron Microscopy (SEM), and nitrogen adsorption-desorption isotherms. Photocatalytic and adsorption tests were conducted separately and simultaneously. The results showed that 97% of CN− was degraded within 24 h due to combined photocatalytic oxidation and adsorption. To estimate the contribution of only adsorption, two-stage tests were performed. First, 74% cyanide ion degradation was reached in 24 h under dark conditions. This result was attributed to CN− adsorption and oxidation due to the generation of H2O2 on the surface of AC. Then, 99% degradation of cyanide ion was obtained through photocatalysis during 24 h. These results showed that photocatalysis and the continuous photo-reactor’s design enhanced the photocatalytic cyanide oxidation performance compared to an agitated batch system. Therefore, the use of TiO2-AC composites in a continuous flow photo-reactor is a promising process for the photocatalytic degradation of cyanide in aqueous solutions.
Nowadays, mining effluents have several contaminants that produce great damage to the environment, cyanide chief among them. Ferrites synthesized from transition metals have oxidative properties that can be used for cyanide oxidation due to their low solubility. In this study, cobalt and copper ferrites were synthesized via the precipitation method, using cobalt nitrate, copper nitrate, and iron nitrate as precursors in a molar ratio of Co or Cu:Fe = 1:2 and NaOH as the precipitating agent. The synthesized ferrites were impregnated in specific areas on active carbon. These composites were characterized using X-Ray Diffraction (XRD) and Scanning Electron Spectroscopy (SEM). The XRD results revealed a cubic spinel structure of ferrites with a single phase of cobalt ferrite and two phases (copper ferrite and copper oxides) for copper. The CoFe2O4 impregnated on active carbon reached a cyanide oxidation of 98% after 8 h of agitation; the composite could be recycled five times with an 18% decrease in the catalytic activity. In cobalt ferrites, a greater dissolution of iron than cobalt was obtained. In the case of copper ferrite, however, the copper dissolution was higher. These results confirm that ferrites and activated carbon composites are a novel alternative for cyanide treatment in mining effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.