Background The mechanism by which highly diluted and agitated solutions have their effect is still unknown, but the development in recent years of new methods identifying changes in water and solute dipole moments is providing insights into potential modes of action. Objective The objective of the current study was to compare the biological effects of Antimonium crudum (AC) previously obtained by our group and already described in the literature with now measurable physico-chemical effects on solvatochromic dyes. Methods Different dilutions of AC and succussed water have been characterized with respect to their effect on the visible spectra of the solvatochromic dyes methylene violet (MV), a pyridinium phenolate (ET33), and a dimethylamino naphthalenone (BDN) compared with in-vitro action against Leishmania amazonensis-infected macrophages. Results Dye responses varied according to the dye used and the level of AC dilution and results were found to corroborate previously published in-vivo and in-vitro effects of AC. In addition, a very significant enhancement in the absorbance increase of MV was seen using the supernatant from AC 200cH-treated cells (15%; p < 0.0001) over that seen with AC 200cH itself (4%; p = 0.034), suggesting the amplification of ultra-high dilution effects by biological systems. Furthermore, supernatants from AC-treated cells increased the range of dilutions of AC that were capable of producing effects on the spectra of MV. The effect of AC dilutions on dye ET33 was eliminated by a weak electric current passed through potency solutions. Conclusion The data confirm a correspondence between the biological effects of dilutions of AC in-vitro and physico-chemical effects on solvatochromic dyes as measured by changes in their visible spectra. Results also indicate high dilutions of AC are sensitive to exposure to electric currents and biological systems.
Background Highly diluted and succussed solutions interact with solvatochromic dyes, indicating that changes in solvent and solute polarity could be related to their mechanism of action. It is not known, however, how the activity associated with succussed high dilutions is transferred to untreated water and what the limits of this process are. Aims The aims of the present study were to ascertain whether a succussed high dilution of phosphorus (1.5 × 1−59 M; Phos 30cH) seeded into a natural water source that fed a fjord and two connected lakes could propagate itself through the lake system (total volume 2200 m3) and, moreover, whether the process could be tracked using solvatochromic dyes. Methods Samples of water were collected before and after seeding, at different times and places throughout the lake system. Controls comprised water taken from an untreated and adjacent, but independent, lake (1385 m3). Results Water samples taken up to 72 hours after the source treatment produced significant increases (p ≤ 0.03) in the absorbance of the solvatochromic dye methylene violet (MV), while samples from the control lake produced no changes. Conclusions The study indicates that activity associated with Phos 30c can propagate itself through large volumes of water, causing changes throughout a whole connected lake system, and that these changes can be tracked using the solvatochromic dye MV. This in turn means the use of homeopathic medicines in large volumes of drinking water, in farming and ecological contexts, now has the potential to be assessed with physico-chemical monitoring.
Introduction: Solvatochromic dyes are probes to detect variations on the dipole moment of solvents after the insertion of homeopathic potencies. Recent studies have shown they can be useful tools in laboratory and field studies to detect the activity of homeopathic remedies. Objective: Determine whether solvatochromic dyes can be a diagnostic tool for cells infected by different agents and/or markers to identify the activity of homeopathic medicines. Methods: Ethilicum 1cH, Silicea terra 6, 30, 200cH; Zincum metallicum 6, 30, 200cH and Phosphorus 6, 30 and 200cH were analyzed by pouring the samples (in a 1:60 rate) into a series of seven dyes (rhodamine, ET 33, ET 30, coumarin 7, NN DMIA, Nile red, methylene violet) diluted in absolute ethanol using pre-established working concentrations. Oscillations of dye absorbance were observed at visible light spectrophotometry according to the remedy and potency. Water and succussed water were used as controls. In a second moment, the absorbance profile of the remedies will be compared with those of biological samples (supernatants) and checked with the biological effect previously obtained from each treatment. Supernatants of RAW 264.7 macrophages stimulated by Calmette-Guérin bacilli (BCG) or infected with Encephalitozoon cuniculi will be analyzed. Results: Preliminary results have shown that Silicea terra 6cH, Phosphorus 30 and 200cH and Zincum metallicum 6, 30 and 200cH reduced the absorbance of methylene violet (p=0.01). Repetitions and analysis of supernatants are expected to be performed in the next steps of the study. Future perspectives: Establish a pattern of reactivity of the studied medicines with different dyes and the putative relation with the corresponding supernatants, as an attempt to obtain a “physicochemical signature” for each kind of infection and/or treatment.
Mice bearing Leishmania (L) amazonensis infection and treated with Antimonium crudum (AC) 30cH presented significant reduction of the monocyte migration to the site of infection with clinical improvement. In vitro, the treatment of infected macrophages with AC 30cH produced inhibition of the parasite-induced peaks of CCL2 (a chemokine for monocytes migration) and inhibition of lysosome activity, explaining the results obtained previously in vivo. In the following studies, physical-chemical parameters of the remedy and respective controls were evaluated, to search for a correlation with the former described biological effects. The study of polarity changes in different water-based dilutions of AC using Cartwright´s method, revealed dilution-dependent variations in the absorbance of three solvatochromic dyes ET 33, BDN and methylene Violet (MV), used as “probes” to evaluate the dipole features of the medicine. The electrical activity of the homeopathic preparations appears to be dilution-dependent and related to their biological effects. Further experiments were performed using samples of the supernatant of infected macrophages after 96 hours of incubation with AC in different dilutions. These samples were processed using the same procedures as used for the original medicines and were analyzed by MV method. All tested potencies presented a sharp increase of absorbance at 580 nm, in relation to all controls (supernatant from untreated cells and cells treated with succussed water), as performed by one-way ANOVA, being F = 176.208; p = 0.001 and ?2 = 0.988. This results strongly suggest that biological systems could amplify the electric signal and the following changes in the medium polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.