The use of blood samples as liquid biopsy is a label-free method for cancer diagnosis that offers benefits over traditional invasive biopsy techniques. Cell sorting by acoustic waves offers a means to separate rare cells from blood samples based on their physical properties in a label-free, contactless and biocompatible manner. Herein, we describe a flow-through separation approach that provides an efficient separation of tumor cells (TCs) from white blood cells (WBCs) in a microfluidic device, “THINUS-Chip” (Thin-Ultrasonic-Separator-Chip), actuated by ultrasounds. We introduce for the first time the concept of plate acoustic waves (PAW) applied to acoustophoresis as a new strategy. It lies in the geometrical chip design: different to other microseparators based on either bulk acoustic waves (BAW) or surface waves (SAW, SSAW and tSAW), it allows the use of polymeric materials without restrictions in the frequency of work. We demonstrate its ability to perform high-throughput isolation of TCs from WBCs, allowing a recovery rate of 84% ± 8% of TCs with a purity higher than 80% and combined viability of 85% at a flow rate of 80 μL/min (4.8 mL/h). The THINUS-Chip performs cell fractionation with low-cost manufacturing processes, opening the door to possible easy printing fabrication.
Acoustophoretic blood plasma separation is based on cell enrichment processes driven by acoustic radiation forces. The combined influence of hematocrit and hydrodynamics has not yet been quantified in the literature for these processes acoustically induced on blood. In this paper, we present an experimental study of blood samples exposed to ultrasonic standing waves at different hematocrit percentages and hydrodynamic conditions, in order to enlighten their individual influence on the acoustic response of the samples. The experiments were performed in a glass capillary (700 µm-square cross section) actuated by a piezoelectric ceramic at a frequency of 1.153 MHz, hosting 2D orthogonal half-wavelength resonances transverse to the channel length, with a single-pressure-node along its central axis. Different hematocrit percentages Hct = 2.25%, 4.50%, 9.00%, and 22.50%, were tested at eight flow rate conditions of Q = 0:80 µL/min. Cells were collected along the central axis driven by the acoustic radiation force, releasing plasma progressively free of cells. The study shows an optimal performance in a flow rate interval between 20 and 80 µL/min for low hematocrit percentages Hct ≤ 9.0%, which required very short times close to 10 s to achieve cell-free plasma in percentages over 90%. This study opens new lines for low-cost personalized blood diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.