Ras signaling elicits diverse outputs, yet how Ras specificity is generated remains incompletely understood. We demonstrate that Wingless (Wg) and Decapentaplegic (Dpp) confer competence for receptor tyrosine kinase-mediated induction of a subset of Drosophila muscle and cardiac progenitors by acting both upstream of and in parallel to Ras. In addition to regulating the expression of proximal Ras pathway components, Wg and Dpp coordinate the direct effects of three signal-activated (dTCF, Mad, and Pointed-functioning in the Wg, Dpp, and Ras/MAPK pathways, respectively) and two tissue-restricted (Twist and Tinman) transcription factors on a progenitor identity gene enhancer. The integration of Pointed with the combinatorial effects of dTCF, Mad, Twist, and Tinman determines inductive Ras signaling specificity in muscle and heart development.
Mesodermal progenitors arise in theDuring animal development, a wide diversity of cellular identities must be specified within initially undifferentiated fields of cells. One solution to this problem is for a hierarchy of regulators to promote the progressive determination of cells, essentially carving out from the original field domains with increasingly restricted developmental potential. In such a mechanism, spatially localized factors first delineate a prepattern in which all cells are equally competent to adopt a particular identity (Stern 1954;Greenwald and Rubin 1992). The expression of additional regulatory molecules in cellular subsets within the prepatterned territory further limits the responses afforded particular cells. Precise refinement of the final pattern can be dictated by direct inhibitory interactions among neighboring cells (Greenwald and Rubin 1992;Simpson 1997). Although many details are known about the later pattern forming steps in a number of developmental systems, relatively little information is available for how early prepatterns are established (Greenwald and Rubin 1992;Kornfeld 1997;Simpson 1997;Vervoort et al. 1997).The Drosophila embryonic mesoderm provides an ideal system in which to investigate prepattern and pattern formation. The mesoderm arises from the ventral most cells of the blastoderm embryo under the influence of the zygotic genes, twist (twi) and snail (sna). Cells expressing these genes invaginate through the ventral furrow at gastrulation. Subsequently, the internalized mesodermal cells migrate dorsolaterally to form a uniform sheet beneath the ectoderm (Bate 1993;Leptin 1995), a process that is controlled by a fibroblast growth factor (FGF) receptor encoded by heartless (htl;Beiman et al. 1996;Gisselbrecht et al. 1996;Shishido et al. 1997;Michelson et al. 1998).
Convergent intercellular signals must be precisely integrated in order to elicit specific biological responses. During specification of muscle and cardiac progenitors from clusters of equivalent cells in the Drosophila embryonic mesoderm, the Ras/MAPK pathway--activated by both epidermal and fibroblast growth factor receptors--functions as an inductive cellular determination signal, while lateral inhibition mediated by Notch antagonizes this activity. A critical balance between these signals must be achieved to enable one cell of an equivalence group to segregate as a progenitor while its neighbors assume a nonprogenitor identity. We have investigated whether these opposing signals directly interact with each other, and we have examined how they are integrated by the responding cells to specify their unique fates. Our findings reveal that Ras and Notch do not function independently; rather, we have uncovered several modes of cross-talk between these pathways. Ras induces Notch, its ligand Delta, and the epidermal growth factor receptor antagonist, Argos. We show that Delta and Argos then synergize to nonautonomously block a positive autoregulatory feedback loop that amplifies a fate-inducing Ras signal. This feedback loop is characterized by Ras-mediated upregulation of proximal components of both the epidermal and fibroblast growth factor receptor pathways. In turn, Notch activation in nonprogenitors induces its own expression and simultaneously suppresses both Delta and Argos levels, thereby reinforcing a unidirectional inhibitory response. These reciprocal interactions combine to generate the signal thresholds that are essential for proper specification of progenitors and nonprogenitors from groups of initially equivalent cells.
Each larval hemisegment comprises approximately 30 uniquely specified somatic muscles. These derive from muscle founders that arise as distinct sibling pairs from the division of muscle progenitor cells. We have analyzed the progenitor cell divisions of three mesodermal lineages that generate muscle (and pericardial cell) founders. Our results show that Inscuteable and Numb proteins are localized as cortical crescents on opposite sides of dividing progenitor cells. Asymmetric segregation of Numb into one of the sibling myoblasts depends on inscuteable and is essential for the specification of distinct sibling cell fates. Loss of numb or inscuteable results in opposite cell fate transformations-both prevent sibling myoblasts from adopting distinct identities, resulting in duplicated or deleted mesodermal structures. Our results indicate that the muscle progenitor cell divisions are intrinsically asymmetric; moreover, the involvement of both inscuteable and numb/N suggests that the specification of the distinct cell fates of sibling myoblasts requires intrinsic and extrinsic cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.