The significant increase in the use of antifungal agents, both for the treatment of candidiasis and invasive aspergillosis and as azole fungicides in agricultural crop protection has resulted in the emergence of resistant clinical isolates, particularly to triazoles and echinocandins. Notably, among isolates that were primarily sensitive to fluconazole such as Candida parapsilosis and Candida tropicalis have witnessed an emerging resistance development. Also for echinocandins, the occurrence of Candida isolates with lower susceptibility to these drugs has been reported, which is possibly due to its broad clinical use. Triazole resistance among Aspergillus fumigatus and other Aspergillus species is commonly found in European and Asian countries. Specific mutations are associated with azole resistance in A. fumigatus and these mutations are now reported globally from six continents. Therefore, we highlight the need to conduct antifungal resistance surveillance studies using clinical isolates of Candida and Aspergillus in different geographical regions and monitoring of the infection rates in distinct population groups for early detection of resistance to these drugs and implementation of efficient policies for infection control and treatment.
f Candida parapsilosis is the main non-albicans Candida species isolated from patients in Latin America. Mutations in the ERG11 gene and overexpression of membrane transporter proteins have been linked to fluconazole resistance. The aim of this study was to evaluate the molecular mechanisms in fluconazole-resistant strains of C. parapsilosis isolated from critically ill patients. The identities of the nine collected C. parapsilosis isolates at the species level were confirmed through molecular identification with a TaqMan qPCR assay. The clonal origin of the strains was checked by microsatellite typing. The Galleria mellonella infection model was used to confirm in vitro resistance. We assessed the presence of ERG11 mutations, as well as the expression of ERG11 and two additional genes that contribute to antifungal resistance (CDR1 and MDR1), by using real-time quantitative PCR. All of the C. parapsilosis (sensu stricto) isolates tested exhibited fluconazole MICs between 8 and 16 g/ml. The in vitro data were confirmed by the failure of fluconazole in the treatment of G. mellonella infected with fluconazole-resistant strains of C. parapsilosis. Sequencing of the ERG11 gene revealed a common mutation leading to a Y132F amino acid substitution in all of the isolates, a finding consistent with their clonal origin. After fluconazole exposure, overexpression was noted for ERG11, CDR1, and MDR1 in 9/9, 9/9, and 2/9 strains, respectively. We demonstrated that a combination of molecular mechanisms, including the presence of point mutations in the ERG11 gene, overexpression of ERG11, and genes encoding efflux pumps, are involved in fluconazole resistance in C. parapsilosis.
BackgroundCandidemia is an increasing problem in tertiary care hospitals worldwide. Here, we report the first outbreak of candidemia caused by fluconazole-resistant C. parapsilosis (FRCP) strains in Brazil.MethodsThis was a cross-sectional study of clinical and microbiological data of all candidemic episodes diagnosed from July 2011 to February 2012 in a 200-bed tertiary care hospital. Initial yeast identification and susceptibility testing were performed using the VITEK 2 - System. Isolates of Candida spp. resistant to fluconazole were sent to a reference laboratory (LEMI-UNIFESP) for further molecular identification and confirmation of resistance by CLSI microdilution test. A multivariate analysis was conducted to identify factors associated with FRCP infection.ResultsWe identified a total of 40 critically ill patients with candidemia (15 women) with a median age of 70 years. The incidence of candidemia was 6 cases/1,000 patients admissions, including 28 cases (70 %) of infection with C. parapsilosis, 21 of which (75 %) were resistant to fluconazole. In only 19 % of FRCP candidemia cases had fluconazole been used previously. The results of our study indicated that diabetes is a risk factor for FRCP candidemia (p = 0.002). Overall, mortality from candidemia was 45 %, and mortality from episodes of FRCP infections was 42.9 %.ConclusionsThe clustering of incident cases in the ICU and molecular typing of strains suggest horizontal transmission of FRCP. Accurate vigilant monitoring for new nosocomial strains of FRCP is required.
Some nutrients play key roles in maintaining the integrity and function of the immune system, presenting synergistic actions in steps determinant for the immune response. Among these elements, zinc and vitamins C and D stand out for having immunomodulatory functions and for playing roles in preserving physical tissue barriers. Considering the COVID-19 pandemic, nutrients that can optimize the immune system to prevent or lower the risk of severe progression and prognosis of this viral infection become relevant. Thus, the present review aims to provide a comprehensive overview of the roles of zinc and vitamins C and D in the immune response to viral infections, focusing on the synergistic action of these nutrients in the maintenance of physical tissue barriers, such as the skin and mucous membranes. The evidence found in the literature shows that deficiency of one or more of these three elements compromises the immune response, making an individual more vulnerable to viral infections and to a worse disease prognosis. Thus, during the COVID-19 pandemic, the adequate intake of zinc and vitamins C and D may represent a promising pharmacological tool due to the high demand for these nutrients in the case of contact with the virus and onset of the inflammatory process. Ongoing clinical trials will help to clarify the role of these nutrients for COVID-19 management.
Background:We identified auranofin as an antimicrobial compound utilizing a highthroughput screen using a Caenorhabditis elegans-Staphylococcus aureus infection model. Results/methodology: Treatment of infected nematodes with auranofin resulted in a prolonged survival rate of 95%, reached with 0.78 μg/ml. Further investigation of the antimicrobial activity of auranofin found inhibition against S. aureus, Enterococcus faecium and Enterococcus faecalis. Importantly, the fungal pathogens Cryptococcus neoformans was also effectively inhibited with an MIC at 0.5 μg/ml. Auranofin appears to target the thioredoxin system. Conclusion: This work provides extensive additional data on the antibacterial effects of auranofin that includes both reference and clinical isolates and reports a novel inhibition of fungal pathogens by this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.