Neutrophils (PMN) play a central role in host defense against the neglected fungal infection paracoccidioidomycosis (PCM), which is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). PCM is of major importance, especially in Latin America, and its treatment relies on the use of antifungal drugs. However, the course of treatment is lengthy, leading to side effects and even development of fungal resistance. The goal of the study was to use low-level laser therapy (LLLT) to stimulate PMN to fight Pb in vivo. Swiss mice with subcutaneous air pouches were inoculated with a virulent strain of Pb or fungal cell wall components (Zymosan), and then received LLLT (780 nm; 50 mW; 12.5 J/cm2; 30 seconds per point, giving a total energy of 0.5 J per point) on alternate days at two points on each hind leg. The aim was to reach the bone marrow in the femur with light. Non-irradiated animals were used as controls. The number and viability of the PMN that migrated to the inoculation site was assessed, as well as their ability to synthesize proteins, produce reactive oxygen species (ROS) and their fungicidal activity. The highly pure PMN populations obtained after 10 days of infection were also subsequently cultured in the presence of Pb for trials of protein production, evaluation of mitochondrial activity, ROS production and quantification of viable fungi growth. PMN from mice that received LLLT were more active metabolically, had higher fungicidal activity against Pb in vivo and also in vitro. The kinetics of neutrophil protein production also correlated with a more activated state. LLLT may be a safe and non-invasive approach to deal with PCM infection.
Paracoccidioidomycosis (PCM) is a systemic fungal infection, endemic in Brazil, that leads to severe morbidity and even mortality if not correctly treated. Patients may respond differently to PCM depending on the pattern of the acquired immune response developed. The onset of protective immune response is notably mediated by neutrophils (PMN) that play an important role through directly killing the fungi and also by interacting with other cell types to modulate the acquired protective immune response that may follow. In that way, this study aimed to present and compare different experimental models of PCM (intraperitoneal and subcutaneous) regarding PMN production and maturation inside femoral bone marrow and also PMN infiltration in peritoneal and subcutaneous exudates of resistant and susceptible mice. We also assessed the fungal colony forming units and the levels of soluble inflammatory mediators (LTB4, KC, IFN-γ, GM-CSF, and IL-10) inside subcutaneous air-pouches to compare the efficiency of the PMN present at this site in relation to the two main neutrophil functions: initial lysis of the invading pathogen and modulation of the acquired immune response. P. brasiliensis inoculated intraperitoneally was able to disseminate to the bone marrow of susceptible mice, causing a more marked alteration of PMN production and maturation than that observed after resistant mice infection by the same route. Subcutaneous air-pouch inoculation of P. brasiliensis elicited a controlled and limited infection that produced a PMN-rich exudate, thus favoring the study of the interaction between the fungus and the neutrophils. Susceptible mice produced higher numbers of PMN; however, these cells were less effective in killing the fungi. Inflammatory cytokines were more pronounced in resistant mice, which supports their PCM raised resistance.
The antifungal drug therapy often employed to treat paracoccidiodomycosis (PCM), an important neglected fungal systemic infection, leads to offensive adverse effects, besides being very long-lasting. In addition, PCM compromises the oral health of patients by leading to oral lesions that are very painful and disabling. In that way, photodynamic therapy (PDT) arises as a new promising adjuvant treatment for inactivating Paracoccidioides brasiliensis (Pb), the responsible fungus for PCM, and also for helping the patients to deal with such debilitating oral lesions. PDT has been linked to an improved microbial killing, also presenting the advantage of not inducing immediate microbial resistance such as drugs. For the present study, we investigated the generation of reactive oxygen species (ROS) by using the fluorescent probes hydroxyphenyl fluorescein (HPF) and aminophenyl fluorescein (APF) after toluidine blue (TBO-37.5 mg/L)-mediated PDT (660 nm, 40 mW, and 0.04 cm spot area) and the action of TBO-PDT upon Pb cultures grown for 7 or 15 days in semisolid Fava Netto's culture medium; we also targeted oral PCM manifestations by reporting the first clinical cases (three patients) to receive topic PDT for such purpose. We were able to show a significant generation of hydroxyl radicals and hypochlorite after TBO-PDT with doses around 90 J/cm; such ROS generation was particularly useful to attack and inactivate Pb colonies at 7 and 15 days. All three patients reported herein related an immediate relief when it came to pain, mouth opening, and also the ability to chew and swallow. As extracted from our clinical results, which are in fact based on in vitro outcomes, TBO-PDT is a very safe, inexpensive, and promising therapy for the oral manifestations of PCM.
The pathogens Schistosoma mansoni and Paracoccidioides brasiliensis share common geographic areas, determining infectious diseases with high mortality rates worldwide. Histopathological and immunological changes induced by each pathogen are well understood; however, the host responses to S. mansoni and P. brasiliensis coinfection are still unknown. Thus, we investigated liver damage and cytokines production in a murine model acutely and chronically coinfected with these pathogens. Fourty male Swiss mice were infected with S. mansoni and P. brasiliensis alone or coinfected. The animals were euthanized with 50 (acute infection) and 120 (chronic infection) days of infection. All infected animals exhibited liver inflammation. Intense granulomatous inflammation was detected in animals infected with S. mansoni alone and those coinfected. Productive and involutive granulomas were clearly observed in acute and chronic infections, respectively. Granuloma size was reduced in the acute phase and increased in the chronic phase of S. mansoni and P. brasiliensis coinfection, compared with animals infected only with S. mansoni. In the chronic phase of infection, the granulomatous inflammation in coinfected animals was characterized by intense neutrophils accumulation and reduced eosinophils number. IFN-γ, IL-2, IL-4, and IL-5 circulating levels were increased in all infected groups. Coinfected animals presented attenuated IFN-γ and IL-4 production in the acute and chronic infections. Taken together, our findings indicate that coinfected animals exhibited a differential modulation of granulomatous inflammation during the acute and chronic phases of infection, which was potentially associated with a divergent profile of cytokines production and migration of neutrophils and eosinophils in response to S. mansoni and P. brasiliensis antigenic stimulation.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.