Sepsis, a major cause of morbidity/mortality in intensive care units worldwide, is commonly associated with cardiac dysfunction, which worsens the prognosis dramatically for patients. Although in recent years the concept of septic cardiomyopathy has evolved, the importance of myocardial structural alterations in sepsis has not been fully explored. This study offers novel and mechanistic data to clarify subcellular events that occur in the pathogenesis of septic cardiomyopathy and myocardial dysfunction in severe sepsis. Cultured neonatal mice cardiomyocytes subjected to serum obtained from mice with severe sepsis presented striking increment of [Ca2+]i and calpain-1 levels associated with decreased expression of dystrophin and disruption and derangement of F-actin filaments and cytoplasmic bleb formation. Severe sepsis induced in mice led to an increased expression of calpain-1 in cardiomyocytes. Moreover, decreased myocardial amounts of dystrophin, sarcomeric actin, and myosin heavy chain were observed in septic hearts associated with depressed cardiac contractile dysfunction and a very low survival rate. Actin and myosin from the sarcomere are first disassembled by calpain and then ubiquitinated and degraded by proteasome or sequestered inside specialized vacuoles called autophagosomes, delivered to the lysosome for degradation forming autophagolysosomes. Verapamil and dantrolene prevented the increase of calpain-1 levels and preserved dystrophin, actin, and myosin loss/reduction as well cardiac contractile dysfunction associated with strikingly improved survival rate. These abnormal parameters emerge as therapeutic targets, which modulation may provide beneficial effects on future vascular outcomes and mortality in sepsis. Further studies are needed to shed light on this mechanism, mainly regarding specific calpain inhibitors.
The physiological function of Ataxin-3 (ATXN3), a deubiquitylase (DUB) involved in Machado-Joseph Disease (MJD), remains elusive. In this study, we demonstrate that ATXN3 is required for neuronal differentiation and for normal cell morphology, cytoskeletal organization, proliferation and survival of SH-SY5Y and PC12 cells. This cellular phenotype is associated with increased proteasomal degradation of α5 integrin subunit (ITGA5) and reduced activation of integrin signalling and is rescued by ITGA5 overexpression. Interestingly, silencing of ATXN3, overexpression of mutant versions of ATXN3 lacking catalytic activity or bearing an expanded polyglutamine (polyQ) tract led to partially overlapping phenotypes. In vivo analysis showed that both Atxn3 knockout and MJD transgenic mice had decreased levels of ITGA5 in the brain. Furthermore, abnormal morphology and reduced branching were observed both in cultured neurons expressing shRNA for ATXN3 and in those obtained from MJD mice. Our results show that ATXN3 rescues ITGA5 from proteasomal degradation in neurons and that polyQ expansion causes a partial loss of this cellular function, resulting in reduced integrin signalling and neuronal cytoskeleton modifications, which may be contributing to neurodegeneration.
Cardiac dysfunction caused by the impairment of myocardial contractility has been recognized as an important factor contributing to the high mortality in sepsis. Calpain activation in the heart takes place in response to increased intracellular calcium influx resulting in proteolysis of structural and contractile proteins with subsequent myocardial dysfunction. The purpose of the present study was to test the hypothesis that increased levels of calpain in the septic heart leads to disruption of structural and contractile proteins and that administration of calpain inhibitor-1 (N-acetyl-leucinyl-leucinyl-norleucinal (ALLN)) after sepsis induced by cecal ligation and puncture prevents cardiac protein degradation. We also tested the hypothesis that calpain plays a role in the modulation of protein synthesis/degradation through the activation of proteasome-dependent proteolysis and inhibition of the mTOR pathway. Severe sepsis significantly increased heart calpain-1 levels and promoted ubiquitin and Pa28β over-expression with a reduction in the mTOR levels. In addition, sepsis reduced the expression of structural proteins dystrophin and β-dystroglycan as well as the contractile proteins actin and myosin. ALLN administration prevented sepsis-induced increases in calpain and ubiquitin levels in the heart, which resulted in decreased of structural and contractile proteins degradation and basal mTOR expression levels were re-established. Our results support the concept that increased calpain concentrations may be part of an important mechanism of sepsis-induced cardiac muscle proteolysis.
Sepsis-induced myocardial dysfunction considerably increases mortality risk in patients with sepsis. Previous studies from our group have shown that sepsis alters the expression of structural proteins in cardiac cells, resulting in cardiomyocyte degeneration and impaired communication between cardiac cells. Caveolin-3 (CAV3) is a structural protein present in caveolae, located in the membrane of cardiac muscle cells, which regulates physiological processes such as calcium homeostasis. In sepsis, there is a disruption of calcium homeostasis, which increases the concentration of intracellular calcium, which can lead to the activation of potent cellular enzymes/proteases which cause severe cellular injury and death. The purpose of the present study was to test the hypotheses that sepsis induces CAV3 overexpression in the heart, and the regulation of L-type calcium channels directly relates to the regulation of CAV3 expression. Severe sepsis increases the expression of CAV3 in the heart, as immunostaining in our study showed CAV3 presence in the cardiomyocyte membrane and cytoplasm, in comparison with our control groups (without sepsis) that showed CAV3 presence predominantly in the plasma membrane. The administration of verapamil, an L-type calcium channel inhibitor, resulted in a decrease in mortality rates of septic mice. This effect was accompanied by a reduction in the expression of CAV3 and attenuation of cardiac lesions in septic mice treated with verapamil. Our results indicate that CAV3 has a vital role in cardiac dysfunction development in sepsis and that the regulation of L-type calcium channels may be related to its expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.