Cocoa originates from beans of the cocoa tree (Theobroma cacao L.) and it is an important commodity in the world and the main ingredient in chocolate manufacture. Its value and quality are related to unique and complex flavors. Bulk cocoas (Forastero type) exhibit strong basic cocoa notes, whereas fine varieties (Criollo, Nacional) show aromatic, floral, or smoother flavor characteristics. About 600 various compounds (alcohols, carboxylic acids, aldehydes, ketones, esters, and pyrazines) have been identified as odor-active components. The specific cocoa aroma arises from complex biochemical and chemical reactions during the postharvest processing of raw beans, and from many influences of the cocoa genotype, chemical make-up of raw seeds, environmental conditions, farming practices, processing, and manufacturing stages. There has been much research on cocoa flavor components. However, the relationships between all chemical components that are likely to play a role in cocoa flavor, their sensory properties, and the sources and mechanisms of flavor formation are not fully understood. This paper provides an overview on cocoa flavor from a compositional and a sensory perspective. The nonvolatile and volatile chemical components of cocoa and chocolate flavor, and their sensory properties correlated to the main influences involved in flavor formation, are reviewed.
The chemical constituents and biological activity of Pinus cembra L. (Pinaceae), native to the Central European Alps and the Carpathian Mountains, are not well known. The aim of the present work was to examine the phenolic content, antioxidant and antimicrobial effects of hydromethanolic extracts of Pinus cembra L. bark and needles. Bark extract had higher concentrations of total phenolics (299.3 vs. 78.22 mg gallic acid equivalents/g extract), flavonoids (125.3 vs. 19.84 mg catechin equivalents/g extract) and proanthocyanidins (74.3 vs. 12.7 mg cyanidin equivalents/g extract) than needle extract and was more active as a free radical scavenger, reducing agent and antimicrobial agent. The EC50 values in the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) and reducing power assays were 71.1, 6.3 and 26 μg/mL for bark extract and 186.1, 24 and 104 μg/mL for needle extract, respectively. In addition, needle extract showed ferrous ions chelating effects (EC50 = 1,755 μg/mL). The antimicrobial effects against Staphylococcus aureus, Sarcina lutea, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans were assessed by the agar diffusion method. Both extracts (4 mg/well) were active against all the microorganisms tested; bark extract showed higher inhibition on all strains. These results indicate that Pinus cembra L. bark and needles are good sources of phytochemicals with antioxidant and antimicrobial activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.