Background: Periodically, humanity is often faced with new and emerging viruses that can be a significant global threat. It has already been over a century post—the Spanish Flu pandemic, and we are witnessing a new type of coronavirus, the SARS-CoV-2, which is responsible for Covid-19. It emerged from the city of Wuhan (China) in December 2019, and within a few months, the virus propagated itself globally now resulting more than 50 million cases with over 1 million deaths. The high infection rates coupled with dynamic population movement demands for tools, especially within a Brazilian context, that will support health managers to develop policies for controlling and combating the new virus.Methods: In this work, we propose a tool for real-time spatio-temporal analysis using a machine learning approach. The COVID-SGIS system brings together routinely collected health data on Covid-19 distributed across public health systems in Brazil, as well as taking to under consideration the geographic and time-dependent features of Covid-19 so as to make spatio-temporal predictions. The data are sub-divided by federative unit and municipality. In our case study, we made spatio-temporal predictions of the distribution of cases and deaths in Brazil and in each federative unit. Four regression methods were investigated: linear regression, support vector machines (polynomial kernels and RBF), multilayer perceptrons, and random forests. We use the percentage RMSE and the correlation coefficient as quality metrics.Results: For qualitative evaluation, we made spatio-temporal predictions for the period from 25 to 27 May 2020. Considering qualitatively and quantitatively the case of the State of Pernambuco and Brazil as a whole, linear regression presented the best prediction results (thematic maps with good data distribution, correlation coefficient >0.99 and RMSE (%) <4% for Pernambuco and around 5% for Brazil) with low training time: [0.00; 0.04 ms], CI 95%.Conclusion: Spatio-temporal analysis provided a broader assessment of those in the regions where the accumulated confirmed cases of Covid-19 were concentrated. It was possible to differentiate in the thematic maps the regions with the highest concentration of cases from the regions with low concentration and regions in the transition range. This approach is fundamental to support health managers and epidemiologists to elaborate policies and plans to control the Covid-19 pandemics.
Objective The new kind of coronavirus SARS-Cov2 spread to countries in all continents in the World. The coronavirus disease 2019 (Covid-19) causes fever, cough, sore throat, and in severe cases shortness of breath and death. To evaluate strategies, it is necessary to forecast the number of cases and deaths, in order to aid the stakeholders in the process of making decisions against the disease. We propose a system for real-time forecast of the cumulative cases of Covid-19 in Brazil. Study Design Monitoring of all Brazilian cities using oficial information from the National Notification System, from March to May 2020, concentrated on Brazil.io databases. Training and evaluation of ARIMA and other machine learning algorithms for temporal forecasting using correlation indexes (Pearson's, Spearman's, and Kendall's) and RMSE(%). Validation from the relative errors of the following six days. Methods Our developed software, COVID-SGIS, captures information from the 26 states and the Distrito Federal at the Brazil.io database. From these data, ARIMA models are created for the accumulation of confirmed cases and death cases by Covid-19. Finally, six-day forecasts graphs are available for Brazil and for each of its federative units, separately, with a 95% CI. In addition to these predictions, the worst and best scenarios are also presented. Results ARIMA models were generated for Brazil and its 27 federative units. The states of Bahia, Maranhao, Piaui, Rio Grande do Norte, Amapa, Rondonia every day of the predictions were in the projection interval. The same happened to the states of Espirito Santo, Minas Gerais, Parana and Santa Catarina. In Brazil, the percentage error between the predicted values and the actual values varied between 2.56% and 6.50%. For the days when the forecasts outside the prediction interval, the percentage errors in relation to the worst case scenario were below 5%. The states of Bahia, Maranhao, Piaui, Rio Grande do Norte, Amapa, and Rondonia every day of the predictions were in the projection interval. The same happened to the states of Espirito Santo, Minas Gerais, Parana and Santa Catarina. Conclusion The proposed method for dynamic forecasting may be used to guide social policies and plan direct interventions in a robust, flexible and fast way. Since it is based on information from multiple databases, it can be adapted to the different realities, becoming an important tool to guide the course of politics and action against Covid-19 pandemic worldwide.
Background: The global burden of the new coronavirus SARS-CoV-2 is increasing at an unprecedented rate. The current spread of Covid-19 in Brazil is problematic causing a huge public health burden to its population and national health-care service. To evaluate strategies for alleviating such problems, it is necessary to forecast the number of cases and deaths in order to aid the stakeholders in the process of making decisions against the disease. We propose a novel system for real-time forecast of the cumulative cases of Covid-19 in Brazil. Methods: We developed the novel COVID-SGIS application for the real-time surveillance, forecast and spatial visualization of Covid-19 for Brazil. This system captures routinely reported Covid-19 information from 27 federative units from the Brazil.io database. It utilizes all Covid-19 confirmed case data that have been notified through the National Notification System, from March to May 2020. Time series ARIMA models were integrated for the forecast of cumulative number of Covid-19 cases and deaths. These include 6-days forecasts as graphical outputs for each federative unit in Brazil, separately, with its corresponding 95% CI for statistical significance. In addition, a worst and best scenarios are presented. Results: The following federative units (out of 27) were flagged by our ARIMA models showing statistically significant increasing temporal patterns of Covid-19 cases during the specified day-to-day period: Bahia, Maranhão, Piauí, Rio Grande do Norte, Amapá, Rondônia, where their day-to-day forecasts were within the 95% CI limits. Equally, the same findings were observed for Espírito Santo, Minas Gerais, Paraná, and Santa Catarina. The overall percentage error between the forecasted values and the actual values varied between 2.56 and 6.50%. For the days when the forecasts fell outside the forecast interval, the percentage errors in relation to the worst case scenario were below 5%. Conclusion: The proposed method for dynamic forecasting may be used to guide social policies and plan direct interventions in a cost-effective, concise, and robust manner. This novel tools can play an important role for guiding the course of action against the Covid-19 pandemic for Brazil and country neighbors in South America.
Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation.
This paper explores the main factors for mosquito-borne transmission of the Zika virus by focusing on environmental, anthropogenic, and social risks. A literature review was conducted bringing together related information from this genre of research from peer-reviewed publications. It was observed that environmental conditions, especially precipitation, humidity, and temperature, played a role in the transmission. Furthermore, anthropogenic factors including sanitation, urbanization, and environmental pollution promote the transmission by affecting the mosquito density. In addition, socioeconomic factors such as poverty as well as social inequality and low-quality housing have also an impact since these are social factors that limit access to certain facilities or infrastructure which, in turn, promote transmission when absent (e.g., piped water and screened windows). Finally, the paper presents short-, mid-, and long-term preventative solutions together with future perspectives. This is the first review exploring the effects of anthropogenic aspects on Zika transmission with a special emphasis in Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.