Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation.
This paper explores the main factors for mosquito-borne transmission of the Zika virus by focusing on environmental, anthropogenic, and social risks. A literature review was conducted bringing together related information from this genre of research from peer-reviewed publications. It was observed that environmental conditions, especially precipitation, humidity, and temperature, played a role in the transmission. Furthermore, anthropogenic factors including sanitation, urbanization, and environmental pollution promote the transmission by affecting the mosquito density. In addition, socioeconomic factors such as poverty as well as social inequality and low-quality housing have also an impact since these are social factors that limit access to certain facilities or infrastructure which, in turn, promote transmission when absent (e.g., piped water and screened windows). Finally, the paper presents short-, mid-, and long-term preventative solutions together with future perspectives. This is the first review exploring the effects of anthropogenic aspects on Zika transmission with a special emphasis in Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.