Catalytic upgrading of vapors from pyrolysis of triglycerides materials is a promising approach to achieve better conversions of hydrocarbons and production of liquid biofuels. Catalytic cracking often shows incomplete conversion due to distillation of initial reaction products and the addition of a second catalytic reactor, whereas pyrolytic vapors are made in contact to a solid catalyst was applied to improve the physical-chemical properties and quality of bio-oil. This work investigated the effect of catalyst content and reaction time by catalytic upgrading from pyrolysis vapors of residual fat at 450 °C and 1.0 atmosphere, on the yields of reaction products, physicochemical properties (density, kinematic viscosity, refractive index, and acid value), and chemical composition of organic liquid products (OLP), over a catalyst fixed bed reactor, in semi pilot scale. Pellets of red mud chemically activated with 1.0 M HCl were used as catalysts. The thermal catalytic cracking of residual fat show OLP yields from 54.4 to 84.88 (wt.%), aqueous phase yields between 2.21 and 2.80 (wt.%), solid phase yields (coke) between 1.30 and 8.60 (wt.%), and gas yields from 11.61 to 34.22 (wt.%). The yields of OLP increases with catalyst content while those of aqueous, gaseous and solid phase decreases. For all experiments, the density, kinematic viscosity, and acid value of OLP decreases with reaction time. The GC-MS of liquid reaction products identified the presence of hydrocarbons and oxygenates. In addition, the hydrocarbon content in OLP increases with reaction time, while those of oxygenates decrease, reaching concentrations of hydrocarbons up to 95.35% (area.). The best results for the physicochemical properties and the maximum hydrocarbon content in OLP were obtained at 450 °C and 1.0 atmosphere, using a catalyst fixed bed reactor, with 5.0% (wt.) red mud pellets activated with 1.0 M HCl as catalyst.
This work aims to investigate the influence of temperature and chemical impregnation in the textural and morphological composition of the bio-adsorbent of bio-adsorption via thermal cracking of the seeds of açaí. The experiments were carried out at 400 °C and 450 °C using a pilot scale reactor. The efficiency of the organic process was calculated in terms of liquid and solid products selected with a chemical impregnation process with NaOH, mainly with the liquid that had a greater product conversion. The elementary samples of the solid products occur with the occurrence of carbonization with an increase in the temperature of the process and the presence of impregnation. The textural and morphological characterization occurred with an analysis of FT-IR, SEM/EDS, XRF, and B.E.T. The in-phase product was developed through the creation of açaí seed in nature and impregnated with NaOH solution (2 M) at temperatures of 400 °C and 450 °C. The adsorption kinetics of acetic acid were investigated at 5, 10, 15, 20, 60, 120, and 180 s. The adsorption is higher at 450 °C and with the chemical impregnation of NaOH since the experiments were able to remove an amount of 317.51 mg acid/g adsorbent acetic acid. All the models analyzed fit the experiments, both for the kinetic models (pseudo-first order and pseudo-second order) and for the equilibrium models (Langmuir and Freundlich).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.