We have compiled historical greenhouse gas emissions and their uncertainties on country and sector level and assessed their contribution to cumulative emissions and to global average temperature increase in the past and for a the future emission scenario. We find that uncertainty in historical contribution estimates differs between countries due to different shares of greenhouse gases and time development of emissions. Although historical emissions in the distant past are very uncertain, their influence on countries' or sectors' contributions to temperature increase is relatively small in most cases, because these results are dominated by recent (high) emissions. For relative contributions to cumulative emissions and temperature Climatic Change (2011) 106:359-391 rise, the uncertainty introduced by unknown historical emissions is larger than the uncertainty introduced by the use of different climate models. The choice of different parameters in the calculation of relative contributions is most relevant for countries that are different from the world average in greenhouse gas mix and timing of emissions. The choice of the indicator (cumulative GWP weighted emissions or temperature increase) is very important for a few countries (altering contributions up to a factor of 2) and could be considered small for most countries (in the order of 10%). The choice of the year, from which to start accounting for emissions (e.g. 1750 or 1990), is important for many countries, up to a factor of 2.2 and on average of around 1.3. Including or excluding land-use change and forestry or non-CO 2 gases changes relative contributions dramatically for a third of the countries (by a factor of 5 to a factor of 90). Industrialised countries started to increase CO 2 emissions from energy use much earlier. Developing countries' emissions from land-use change and forestry as well as of CH 4 and N 2 O were substantial before their emissions from energy use.
Tires are complex materials manufactured from vulcanized rubber and various other reinforcing materials. One billion end-of-life tires (ELTs) are discarded annually, drawing attention from society. Options for their disposal include reuse, retreading, regeneration, co-processing, pyrolysis, and recycling; however, the ideal alternative has yet to be established. Life cycle assessment (LCA) has been used to quantify their impact and support the decision-making process, in order to determine the most beneficial alternative from an environmental standpoint. Scientific studies on LCA have been carried out on different continents, mainly Europe, Asia, and America. The aim of this chapter was to review studies on the life cycle assessment of end-of-life tire disposal. The main treatment and final destination options were reviewed as well as the most important limitations and aspects of the technologies studied. The most common form of disposal is recycling, with mechanical recycling for use in synthetic grass exhibiting the best environmental performance according to scientific research. Energy recovery also shows good performance, largely due to the emissions prevented through energy conversion. Co-processed and retreaded tires are regularly used for comparison but typically display poor environmental performance in relation to the first two alternatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.