Background Molluscs remain one significantly under-represented taxa amongst available genomic resources, despite being the second-largest animal phylum and the recent advances in genomes sequencing technologies and genome assembly techniques. With the present work, we want to contribute to the growing efforts by filling this gap, presenting a new high-quality reference genome for Mytilus edulis and investigating the evolutionary history within the Mytilidae family, in relation to other species in the class Bivalvia. Results Here we present, for the first time, the discovery of multiple whole genome duplication events in the Mytilidae family and, more generally, in the class Bivalvia. In addition, the calculation of evolution rates for three species of the Mytilinae subfamily sheds new light onto the taxa evolution and highlights key orthologs of interest for the study of Mytilus species divergences. Conclusions The reference genome presented here will enable the correct identification of molecular markers for evolutionary, population genetics, and conservation studies. Mytilidae have the capability to become a model shellfish for climate change adaptation using genome-enabled systems biology and multi-disciplinary studies of interactions between abiotic stressors, pathogen attacks, and aquaculture practises.
Molluscs remain one significantly under-represented taxa amongst available genomic resources, despite being the second-largest animal phylum and the recent advances in genomes sequencing technologies and genome assembly techniques. With the present work, we want to contribute to the growing efforts by filling this gap, presenting a new high-quality reference genome for Mytilus edulis and investigating the evolutionary history within the Mytilidae family, in relation to other species in the class Bivalvia. Here we present, for the first time, the discovery of multiple whole genome duplication events in the Mytilidae family and, more generally, in the class Bivalvia. In addition, the calculation of evolution rates for three species of the Mytilinae subfamily sheds new light onto the taxa evolution and highlights key orthologs of interest for the study of Mytilus species divergences. The reference genome presented here will enable the correct identification of molecular markers for evolutionary, population genetics, and conservation studies. Mytilidae have the capability to become a model shellfish for climate change adaptation using genome-enabled systems biology and multi-disciplinary studies of interactions between abiotic stressors, pathogen attacks, and aquaculture practises.
In Scotland, bivalves are widely distributed. However, their larvae dispersion is still largely unknown and difficult to assess in situ. And, while Mytilus spp. dominate shellfish production, it is mostly dependent on natural spat recruitment from wild populations. Understanding the larval distribution pattern would safeguard natural resources while also ensuring sustainable farming practises. The feasibility of a model that simulates biophysical interactions between larval behaviour and ocean motions was investigated. We employed an unstructured tri-dimensional hydrodynamic model (finite volume coastal ocean model) to drive a particle tracking model, where prediction of larval movement and dispersal at defined locations might aid in population monitoring and spat recruitment. Our findings reveal a strong link between larval distribution and meteorological factors such as wind forces and currents velocity. The model, also, depicts a fast and considerable larval movement, resulting in a substantial mix of plankton and bivalve larvae, forming a large connection between the southern and northern regions of Scotland’s West coast. This enables us to forecast the breeding grounds of any area of interest, potentially charting connectivity between cultivated and wild populations. These results have significant implications for the dynamics of ecologically and economically important species, such as population growth and loss, harvesting and agricultural management in the context of climate change, and sustainable shellfish fisheries management. Furthermore, the observations on Scottish water flow suggest that tracking particles with similar behaviour to bivalve larvae, such as other pelagic larval stages of keystone species and potential pathogens such as sea lice, may have policy and farming implications, as well as disease control amid global warming issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.