Abstract. In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences.Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of watercolumn oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
Proposed harvesting of polymetallic nodules in the Central Tropical Pacific will generate plumes of suspended sediment which are anticipated to be ecologically harmful. While the deep sea is low in energy, it also can be highly turbulent, since the vertical density gradient which suppresses turbulence is weak. The ability to predict the impact of deep plumes is limited by scarcity of in-situ observations. Our observations show that the low-energy environment more than four kilometres below the surface ultimately becomes an order of magnitude more energetic for periods of weeks in response to the passage of mesoscale eddies. The source of these eddies is remote in time and space, here identified as the Central American Gap Winds. Abyssal current variability is controlled by comparable contributions from tides, surface winds and passing eddies. During eddy-induced elevated flow periods mining-related plumes, potentially supplemented by natural sediment resuspension, are expected to spread and disperse more widely and rapidly. Predictions are given of the timing, location and scales of impact.
Summary1. Offshore renewable energy provides an increasing component of our electricity supply. We have limited understanding of the potential environmental impacts of these developments, particularly in the move to larger scales. Surfaces provided by devices offer novel habitat to marine organisms, which may allow species to spread to new areas. 2. We used coupled biological and hydrodynamic models to investigate the spread of intertidal marine organisms with pelagic larvae (such as barnacles or gastropods) in the region around south-western Scotland. We assessed the impact of novel habitat on dispersal and its role in allowing transgression of physical barriers. 3. Model renewable energy device sites provided habitat for pelagic larval particles that would otherwise have been lost offshore. They also provided a source of larvae for existing coastal sites. 4. Many offshore devices fulfilled source and destination (or intermediate connection) roles, creating new dispersal pathways, and allowing previously impossible northward dispersal from the Northern Irish coast to Scotland. 5. Synthesis and applications. New habitat close to biogeographical barriers has implications for existing species' distributions and genetic population structure. It also affects the spread of non-native species and 'climate migrants'. Monitoring these sites for the presence of such species will be important in determining the future ecology of coastal habitat and in maintaining economic aquaculture and marina operations. Future model studies should focus on particular species of importance, taking account of their biology and current distribution.
Fjordic coastlines provide sheltered locations for finfish and shellfish aquaculture, and are often subject to harmful algal blooms (HABs) some of which develop offshore and are then advected to impact nearshore aquaculture. Numerical models are a potentially important tool for providing early warning of such HAB events. However, the complex topography of fjordic shelf regions is a significant challenge to modelling. This is frequently compounded by complex bathymetry and local weather patterns. Existing structured grid models do not provide the resolution needed to represent these coastlines in their wider shelf context. In a number of locations advectively transported blooms of the ichthyotoxic dinoflagellate Karenia mikimotoi are of particular concern for the finfish industry. Here were present a novel hydrodynamic model of the coastal waters to the west of Scotland that is based on unstructured finite volume methodology, providing a sufficiently high resolution hydrodynamical structure to realistically simulate the transport of particles (such as K. mikimotoi cells) within nearshore waters where aquaculture sites are sited. Model-observation comparisons reveal close correspondence of tidal elevations for major semidiurnal and diurnal tidal constituents. The thermohaline structure of the model and its current fields are also in good agreement with a number of existing observational datasets. Simulations of the transport of Lagrangian drifting buoys, along with the incorporation of an individual-based biological model, based on a bloom of K. mikimotoi, demonstrate that unstructured grid models have considerable potential for HAB prediction in Scotland and in complex topographical regions elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.