Media use cases for emergency services require mission-critical levels of reliability for the delivery of media-rich services such as video streaming. With the upcoming deployment of the Fifth Generation (5G) networks, a wide variety of applications and services with heterogeneous performance requirements are expected to be supported, and any migration of missioncritical services to 5G networks presents significant challenges in the Quality of Service (QoS), for emergency service operators. This paper presents a novel SliceNet framework, based on advanced and customisable network slicing to address some of the highlighted challenges in migrating eHealth telemedicine services to 5G networks. An overview of the framework outlines the technical approaches in beyond the-state-of-the-art network slicing. Subsequently, the paper emphasises the design and prototyping of a media-centric eHealth use case, focusing on a set of innovative enablers towards achieving end-to-end QoS-aware network slicing capabilities, required by this demanding use case. Experimental results empirically validate the prototyped enablers and demonstrate the applicability of the proposed framework in such media-rich use cases.
Network slicing has emerged as a major new networking paradigm for meeting the diverse requirements of various vertical businesses in virtualised and softwarised 5G networks. SliceNet is a project of the EU 5G Infrastructure Public Private Partnership (5G PPP) and focuses on network slicing as a cornerstone technology in 5G networks, and addresses the associated challenges in managing, controlling and orchestrating the new services for users especially vertical sectors, thereby maximising the potential of 5G infrastructures and their services by leveraging advanced software networking and cognitive network management. This paper presents the vision of the SliceNet project, highlighting the gaps in existing work and challenges, the proposed overall architecture, proposed technical approaches, and use cases.
As a fundamental technology in the Fifth-Generation (5G) mobile networks, network slicing creates multiple logical networks for various vertical businesses over the same physical 5G infrastructure to achieve cost-effective service provisioning. Meanwhile, mission-critical vertical businesses would require a very high level of guaranteed Quality of Service (QoS) that is beyond software-based network slicing approaches. In this paper, we address a highly demanding Smart Grid Self-Healing Automatic Reconfiguration use case to ensure ultra-Reliable and Low-Latency communications (uRLLC) through improved network slicing based on programmable hardware acceleration. Empirical results have demonstrated the superior performance of the proposed approach in meeting the strict and challenging QoS requirements of this use case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.