BACKGROUND
Neuroimaging studies show structural alterations in several brain regions in children and adults with attention-deficit/hyperactivity disorder (ADHD). Through the formation of the worldwide ENIGMA ADHD Working Group, we addressed weaknesses of prior imaging studies and meta-analyses in sample size and methodological heterogeneity.
METHODS
Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites (age range: 4–63 years; 66% males). Individual sites analyzed magnetic resonance imaging brain scans with harmonized protocols. Case-control differences in subcortical structures and intracranial volume (ICV) were assessed through mega-and meta-analysis.
FINDINGS
The volumes of the accumbens (Cohen’s d=−0.15), amygdala (d=−0.19), caudate (d=−0.11), hippocampus (d=−0.11), putamen (d=−0.14), and ICV (d=−0.10) were found to be smaller in cases relative to controls. Effect sizes were highest in children, case-control differences were not present in adults. Explorative lifespan modeling suggested a delay of maturation and a delay of degeneration. Psychostimulant medication use or presence of comorbid psychiatric disorders did not influence results, nor did symptom scores correlate with brain volume.
INTERPRETATION
Using the largest data set to date, we extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. We add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD, and provide unprecedented precision in effect size estimates. Lifespan analyses suggest that, in the absence of well-powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of life provides a means to generate hypotheses about lifespan trajectories in brain phenotypes.
FUNDING
National Institutes of Health
Sunovian. He is/has been involved in clinical trials conducted by Lilly & Shire. The present work is unrelated to the above grants and relationships. Jonna Kuntsi has given talks at educational events sponsored by Medice; all funds are received by King's College London and used for studies of ADHD. Theo Van Erp consulted for Roche Pharmaceuticals and has a contract with Otsuka Pharmaceutical, Ltd. Anders Dale is a Founder of CorTechs Labs, Inc. He serves on the Scientific Advisory Boards of CorTechs Labs and Human Longevity, Inc., and receives research funding through a Research Agreement with General Electric Healhcare. Paulo Mattos was on the speakers' bureau and/or acted as consultant for Janssen-Cilag, Novartis, and Shire in the previous five years; he also received travel awards to participate in scientific meetings from those companies. The ADHD outpatient program (Grupo de Estudos do Déficit de Atenção/Institute of Psychiatry) chaired by Dr. Mattos has also received research support from Novartis and Shire.The funding sources had no role in the design and conduct of the study; collection, management, analysis, or interpretation of the data; or preparation, review, or approval of the manuscript. Tobias Banaschewski served in an advisory or consultancy role for Actelion,
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share behavioural-cognitive abnormalities in sustained attention. A key question is whether this shared cognitive phenotype is based on common or different underlying pathophysiologies. To elucidate this question, we compared 20 boys with ADHD to 20 age and IQ matched ASD and 20 healthy boys using functional magnetic resonance imaging (fMRI) during a parametrically modulated vigilance task with a progressively increasing load of sustained attention. ADHD and ASD boys had significantly reduced activation relative to controls in bilateral striato–thalamic regions, left dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex. Both groups also displayed significantly increased precuneus activation relative to controls. Precuneus was negatively correlated with the DLPFC activation, and progressively more deactivated with increasing attention load in controls, but not patients, suggesting problems with deactivation of a task-related default mode network in both disorders. However, left DLPFC underactivation was significantly more pronounced in ADHD relative to ASD boys, which furthermore was associated with sustained performance measures that were only impaired in ADHD patients. ASD boys, on the other hand, had disorder-specific enhanced cerebellar activation relative to both ADHD and control boys, presumably reflecting compensation. The findings show that ADHD and ASD boys have both shared and disorder-specific abnormalities in brain function during sustained attention. Shared deficits were in fronto–striato–parietal activation and default mode suppression. Differences were a more severe DLPFC dysfunction in ADHD and a disorder-specific fronto–striato–cerebellar dysregulation in ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.