Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
Light-induced phase segregation in mixed-halide perovskite photovoltaic materials results in the formation of low-band-gap regions that limit the voltage of devices. This work explores the dependence of this light instability on crystal structure and maps it across the cubic-tetragonal solvus in the (Cs y FA 1Ày ) Pb(Br x I 1Àx ) 3 phase diagram.
Engineering 2D/3D perovskite interfaces is a common route to realizing efficient and
stable perovskite solar cells. Whereas 2D perovskite’s main function in trap
passivation has been identified and is confirmed here, little is known about its 2D/3D
interface properties under thermal stress, despite being one of the main factors that
induces device instability. In this work, we monitor the response of two typical 2D/3D
interfaces under a thermal cycle by
in situ
X-ray scattering. We reveal
that upon heating, the 2D crystalline structure undergoes a dynamical transformation
into a mixed 2D/3D phase, keeping the 3D bulk underneath intact. The observed 3D bulk
degradation into lead iodide is blocked, revealing the paramount role of 2D perovskite
in engineering stable device interfaces.
Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye-sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview of the stateof-the-art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley-Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state-of-the-art emerging PVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.