Abstract-This study was designed to test the hypothesis that stimulation of nicotinamide adenine dinucleotide/ nicotinamide adenine dinucleotide phosphate (NADH/NADPH) oxidase is involved in increased vascular superoxide anion (⅐O 2 Ϫ ) production in spontaneously hypertensive rats (SHR). The study was performed in 16-week-old and 30-week-old normotensive Wistar-Kyoto rats (WKY 16 and WKY 30 , respectively) and in 16-week-old and 30-week-old SHR (SHR 16 and SHR 30 , respectively). In addition, 16-week-old SHR were treated with oral irbesartan (average dose 20 mg/kg per day) for 14 weeks (SHR 30 -I). Aortic NADH/NADPH oxidase activity was determined by use of chemiluminescence with lucigenin. The expression of p22phox messenger RNA was assessed by competitive reverse transcription-polymerase chain reaction. Vascular responses to acetylcholine were determined by isometric tension studies. Aortic wall structure was studied, determining the media thickness and the cross-sectional area by morphometric analysis. Whereas systolic blood pressure was significantly increased in the 2 groups of hypertensive animals compared with their normotensive controls, no differences were observed in systolic blood pressure between SHR 30 and SHR 16 . No other differences in the parameters measured were found between WKY 16 and SHR 16 . In SHR 30 compared with WKY 30 , we found significantly greater p22phox mRNA level, NADH/NADPH-driven ⅐O 2 Ϫ production, media thickness, and cross-sectional area and an impaired vasodilation in response to acetylcholine. Treated SHR had similar NADH/NADPH oxidase activity and p22phox expression as the WKY 30 group. The vascular functional and morphological parameters were improved in SHR 30 -I. These findings suggest that an association exists between p22phox gene overexpression and NADH/NADPH overactivity in the aortas of adult SHR. Enhanced NADH/NADPH oxidase-dependent ⅐O 2 Ϫ production may contribute to endothelial dysfunction and vascular hypertrophy in this genetic model of hypertension.
Increased vascular reactive oxygen species production, especially superoxide anion, contributes significantly in the functional and structural alterations present in hypertension. An enhanced superoxide production causes a diminished NO bioavailability by an oxidative reaction that inactivates NO. Exaggerated superoxide levels and a low NO bioavailability lead to endothelial dysfunction and hypertrophy of vascular cells. It has been shown that the enzyme NAD(P)H oxidase plays a major role as the most important source of superoxide anion in vascular cells. Several experimental observations have shown an enhanced superoxide generation as a result of the activation of vascular NAD(P)H oxidase in hypertension. Although this enzyme responds to stimuli such as vasoactive factors, growth factors, and cytokines, some recent data suggest the existence of a genetic background modulating the expression of its different components. New polymorphisms have been identified in the promoter of the p22 phox gene, an essential subunit of NAD(P)H oxidase, influencing the activity of this enzyme. Genetic investigations of these polymorphisms will provide novel markers for determination of genetic susceptibility to oxidative stress in hypertension.
Oxidative stress plays an important role in the pathophysiology of vascular diseases. Reactive oxygen species, especially superoxide anion and hydrogen peroxide, are important signalling molecules in cardiovascular cells. Enhanced superoxide production increases nitric oxide inactivation and leads to an accumulation of peroxynitrites and hydrogen peroxide. Reactive oxygen species participate in growth, apoptosis and migration of vascular smooth muscle cells, in the modulation of endothelial function, including endothelium-dependent relaxation and expression of proinflammatory phenotype, and in the modification of the extracellular matrix. All these events play important roles in vascular diseases such as hypertension, suggesting that the sources of reactive oxygen species and the signalling pathways that they modify may represent important therapeutic targets. Potential sources of vascular superoxide production include NADPH-dependent oxidases, xanthine oxidases, lipoxygenases, mitochondrial oxidases and nitric oxide synthases. Studies performed during the last decade have shown that NADPH oxidase is the most important source of superoxide anion in phagocytic and vascular cells. Evidence from experimental animal and human studies suggests a significant role of NADPH oxidase activation in the vascular remodelling and endothelial dysfunction found in cardiovascular diseases.
The term oxidative stress refers to a situation in which cells are exposed to excessive levels of either molecular oxygen or chemical derivatives of oxygen (ie, reactive oxygen species). Three enzyme systems produce reactive oxygen species in the vascular wall: NADH/NADPH oxidase, xanthine oxidoreductase, and endothelial nitric oxide synthase. Among vascular reactive oxygen species superoxide anion plays a critical role in vascular biology because it is the source for many other reactive oxygen species and various vascular cell functions. It is currently thought that increases in oxidant stress, namely excessive production of superoxide anion, are involved in the pathophysiology of endothelial dysfunction that accompanies a number of cardiovascular risk factors including hypercholesterolemia, hypertension and cigarette smoking. On the other hand, vascular oxidant stress plays a pivotal role in the evolution of clinical conditions such as atherosclerosis, diabetes and heart failure.
Leptin inhibits the contractile response induced by angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) of the aorta. We studied in vitro and ex vivo the role of nitric oxide (NO) in the effect of leptin on the Ang II-induced vasoconstriction of the aorta of 10-wk-old Wistar rats. NO and nitric oxide synthase (NOS) activity were assessed by the Griess and (3)H-arginine/citrulline conversion assays, respectively. Stimulation of inducible NOS (iNOS) as well as Janus kinases/signal transducers and activators of transcription (JAK/STAT) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways were determined by Western blot. The contractile responses to Ang II were evaluated in endothelium-denuded aortic rings using the organ bath system. Changes in intracellular Ca(2+) were measured in VSMCs using fura-2 fluorescence. Leptin significantly (P < or = 0.01) stimulated NO release and NOS activity in VSMCs. Leptin's effect on NO was abolished by the NOS inhibitor, N(G)-monomethyl l-arginine, or the iNOS selective inhibitor L-N(6)-(1-iminoethyl)-lysine. Accordingly, leptin increased iNOS protein expression, with a comparable time course with that of NO production and NOS activity. Leptin also significantly increased STAT3 (P < or = 0.01) and Akt (P < or = 0.001) phosphorylation. Moreover, either the JAK2 inhibitor, AG490, or the PI3K inhibitor, wortmannin, significantly (P < or = 0.05) abrogated the leptin-induced increase in iNOS protein. Finally, both N(G)-monomethyl L-arginine and L-N(6)-(1-iminoethyl)-lysine inhibitors completely blunted (P < or = 0.001) the leptin-mediated inhibition of the Ang II-induced VSMC activation and vasoconstriction. These findings suggest that the endothelium-independent depressor action of leptin is mediated by an increase of NO bioavailability in VSMCs. This process requires the up-regulation of iNOS through mechanisms involving JAK2/STAT3 and PI3K/Akt pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.