The statistics presented by the World Health Organization inform that 90% of the suicides can be attributed to mental illnesses in high-income countries. Besides, previous studies concluded that people with mental illnesses tend to reveal their mental condition on social media, as a way of relief. Thus, the main objective of this work is the analysis of the messages that a user posts online, sequentially through a time period, and detect as soon as possible if this user is at risk of depression. This paper is a preliminary attempt to minimize measures that penalize the delay in detecting positive cases. Our experiments underline the importance of an exhaustive sentiment analysis and a combination of learning algorithms to detect early symptoms of depression.
Indigenous beers (chicha) are part of the indigenous culture in Ecuador. The fermentation process of these beers probably relies on microorganisms from fermented substrates, environment and human microbiota. We analyzed the microbiota of artisanal beers (including a type of beer produced after chewing boiled cassava) using bacterial culture and 16S ribosomal RNA (rRNA) gene-based tag-encoded FLX amplicon pyrosequencing (bTEFAP). Surprisingly, we found that Streptococcus salivarius and Streptococcus mutans (part of the human oral microbiota) were among the most abundant bacteria in chewed cassava and in non-chewed cassava beers. We also demonstrated that S. salivarius and S. mutans (isolated from these beers) could proliferate in cassava mush. Lactobacillus sp. was predominantly present in most types of Ecuadorian chicha.
The impact of cancer in the society has created the necessity of new and faster theoretical models that may allow earlier cancer detection. The present review gives the prediction of cancer by using the star graphs of the protein sequences and proteome mass spectra by building a Quantitative Protein -Disease Relationships (QPDRs), similar to Quantitative Structure Activity Relationship (QSAR) models. The nodes of these star graphs are represented by the amino acids of each protein or by the amplitudes of the mass spectra signals and the edged are the geometric and/or functional relationships between the nodes. The star graphs can be numerically described by the invariant values named topological indices (TIs). The transformation of the star graphs (graphical representation) of proteins into TIs (numbers) facilitates the manipulation of protein information and the search for structure-function relationships in Proteomics. The advantages of this method include simplicity, fast calculations and free resources such as S2SNet and MARCH-INSIDE tools. Thus, this ideal theoretical scheme can be easily extended to other types of diseases or even other fields, such as Genomics or Systems Biology.
Anorexia Nervosa (AN) is a serious mental disorder that has been proved to be traceable on social media through the analysis of users' written posts. Here we present an approach to generate word embeddings enhanced for a classification task dedicated to the detection of Reddit users with AN. Our method extends Word2vec's objective function in order to put closer domain-specific and semantically related words. The approach is evaluated through the calculation of an average similarity measure, and via the usage of the embeddings generated as features for the AN screening task. The results show that our method outperforms the usage of fine-tuned pre-learned word embeddings, related methods dedicated to generate domain adapted embeddings, as well as representations learned on the training set using Word2vec. This method can potentially be applied and evaluated on similar tasks that can be formalized as document categorization problems. Regarding our use case, we believe that this approach can contribute to the development of proper automated detection tools to alert and assist clinicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.