The impact of cancer in the society has created the necessity of new and faster theoretical models that may allow earlier cancer detection. The present review gives the prediction of cancer by using the star graphs of the protein sequences and proteome mass spectra by building a Quantitative Protein -Disease Relationships (QPDRs), similar to Quantitative Structure Activity Relationship (QSAR) models. The nodes of these star graphs are represented by the amino acids of each protein or by the amplitudes of the mass spectra signals and the edged are the geometric and/or functional relationships between the nodes. The star graphs can be numerically described by the invariant values named topological indices (TIs). The transformation of the star graphs (graphical representation) of proteins into TIs (numbers) facilitates the manipulation of protein information and the search for structure-function relationships in Proteomics. The advantages of this method include simplicity, fast calculations and free resources such as S2SNet and MARCH-INSIDE tools. Thus, this ideal theoretical scheme can be easily extended to other types of diseases or even other fields, such as Genomics or Systems Biology.
A new algorithm is presented for finding genotype-phenotype association rules from data related to complex diseases. The algorithm was based on genetic algorithms, a technique of evolutionary computation. The algorithm was compared to several traditional data mining techniques and it was proved that it obtained better classification scores and found more rules from the data generated artificially. It also obtained similar results when using some UCI Machine Learning datasets. In this chapter it is assumed that several groups of Single Nucleotide Polymorphisms (SNPs) have an impact on the predisposition to develop a complex disease like schizophrenia. It is expected to validate this in a short period of time on real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.