Increased iron levels and iron-mediated oxidative stress play an important role in the pathogenesis of many neurodegenerative diseases. The finding that mutations in the ferritin light polypeptide (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy (HF) provided a direct connection between abnormal brain iron storage and neurodegeneration. HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic ferritin inclusion bodies in glia and neurons throughout the CNS and in tissues of multiple organ systems. Here we report that the expression in transgenic mice of a human FTL cDNA carrying a thymidine and cytidine insertion at position 498 (FTL498 -499InsTC) leads to the formation of nuclear and cytoplasmic ferritin inclusion bodies. As in HF, ferritin inclusions are seen in glia and neurons throughout the CNS as well as in cells of other organ systems. Our studies show histological, immunohistochemical, and biochemical similarities between ferritin inclusion bodies found in transgenic mice and in individuals with HF. Expression of the transgene in mice leads to a significant decrease in motor performance and a shorter life span, formation of ferritin inclusion bodies, misregulation of iron metabolism, accumulation of ubiquitinated proteins, and incorporation of elements of the proteasome into inclusions. This new transgenic mouse represents a relevant model of HF in which to study the pathways that lead to neurodegeneration in HF, to evaluate the role of iron mismanagement in neurodegenerative disorders, and to evaluate potential therapies for HF and related neurodegenerative diseases.
Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease clinically characterized by the presence of cataracts, hearing impairment, cerebellar ataxia and dementia. Neuropathologically, FDD is characterized by the presence of widespread cerebral amyloid angiopathy (CAA), parenchymal amyloid deposition and neurofibrillary tangles. FDD is caused by a 10-nucleotide duplication-insertion in the BRI2 gene that generates a larger-than-normal precursor protein, of which the Danish amyloid subunit (ADan) comprises the last 34 amino acids. Here, we describe a transgenic mouse model for FDD (Tg-FDD) in which the mouse Prnp (prion protein) promoter drives the expression of the Danish mutant form of human BRI2. The main neuropathological findings in Tg-FDD mice are the presence of widespread CAA and parenchymal deposition of ADan. In addition, we observe the presence of amyloid-associated gliosis, an inflammatory response and deposition of oligomeric ADan. As the animals aged, they showed abnormal grooming behavior, an arched back, and walked with a wide-based gait and shorter steps. This mouse model may give insights on the pathogenesis of FDD and will prove useful for the development of therapeutics. Moreover, the study of Tg-FDD mice may offer new insights into the role of amyloid in neurodegeneration in other disorders, including Alzheimer disease.
Nucleotide insertions in the ferritin light chain (FTL) polypeptide gene cause hereditary ferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin and iron in the central nervous system. Here we describe for the first time the protein structure and iron storage function of the FTL mutant p.Phe167SerfsX26 (MT-FTL), which has a C terminus altered in sequence and extended in length. MT-FTL polypeptides assembled spontaneously into soluble, spherical 24-mers that were ultrastructurally indistinguishable from those of the wild type. Far-UV CD showed a decrease in ␣-helical content, and 8-anilino-1-naphthalenesulfonate fluorescence revealed the appearance of hydrophobic binding sites. Near-UV CD and proteolysis studies suggested little or no structural alteration outside of the C-terminal region. In contrast to wild type, MT-FTL homopolymers precipitated at much lower iron loading, had a diminished capacity to incorporate iron, and were less thermostable. However, precipitation was significantly reversed by addition of iron chelators both in vitro and in vivo. Our results reveal substantial protein conformational changes localized at the 4-fold pore of MT-FTL homopolymers and imply that the C terminus of the MT-FTL polypeptide plays an important role in ferritin solubility, stability, and iron management. We propose that the protrusion of some portion of the C terminus above the spherical shell allows it to cross-link with other mutant polypeptides through iron bridging, leading to enhanced mutant precipitation by iron. Our data suggest that hereditary ferritinopathy pathogenesis is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates.Iron is an essential element needed for vital processes such as neuronal development, myelination, synthesis, and catabolism of neurotransmitters and electron transport, as well as heme and iron-sulfur cluster synthesis (1). Iron that is not utilized immediately in the cell is stored in ferritin. However, when iron is improperly regulated, it is potentially toxic leading to cell death. Mammalian ferritin is a large, iron-storage heteropolymer composed of two conformationally equivalent subunit types, light (FTL) 2 and heavy (FTH1) polypeptides, which are expressed in most kinds of cells (2-5). A single ferritin protein is composed of 24 self-assembled polypeptide subunits related by 4-, 3-, and 2-fold symmetry axes with one polypeptide per asymmetric unit. Each polypeptide subunit consists of a bundle of four parallel ␣-helices (A-D), a long extended loop (connecting helices B and C), and a C terminus with a short ␣-helix (E), which is involved in important stabilizing interactions around the 4-fold symmetry axes (2, 6, 7). Although both types of polypeptide subunits share a high degree of conformational similarity, they have diverse functional roles. The FTH1 subunit has a potent ferroxidase activity that catalyzes the oxidation of ferrous iron, whereas the F...
Fibroblast growth factor-1 (FGF1 or acidic FGF) is highly expressed in motor neurons. FGF-1 is released from cells by oxidative stress, which might occur from SOD-1 aberrant function in amyotrophic lateral sclerosis (ALS). Although FGF-1 is known to be neuroprotective after spinal cord injury or axotomy, we found that FGF-1 could activate spinal cord astrocytes in a manner that decreased motor neuron survival in co-cultures. FGF-1 induced accumulation of the FGF receptor 1 (FGFR1) in astrocyte nuclei and potently stimulated nerve growth factor (NGF) expression and secretion. The FGFR1 tyrosine kinase inhibitor PD166866 prevented these effects. Previously, we have shown that NGF secretion by reactive astrocytes induces motor neuron apoptosis through a p75 NTR -dependent mechanism. Embryonic motor neurons co-cultured on the top of astrocytes exhibiting activated FGFR1 underwent apoptosis, which was prevented by PD166866 or by adding either anti-NGF or anti-p75 NTR neutralizing antibodies. In the degenerating spinal cord of mice carrying the ALS mutation G93A of Cu, Zn superoxide dismutase, FGF-1 was no longer localized only in the cytosol of motor neurons, while FGFR1 accumulated in the nuclei of reactive astrocytes. These results suggest that FGF-1 released by oxidative stress from motor neurons might have a role in activating astrocytes, which could in turn initiate motor neuron apoptosis in ALS through a p75 NTR -dependent mechanism.
Insertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498‐499InsTC cDNA. Compared with wild‐type mice, brain extracts from Tg (FTL‐Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor‐1, and a significant increase in iron levels. Transgenic mice also showed the presence of markers for lipid peroxidation, protein carbonyls, and nitrone–protein adducts in the brain. However, gene expression analysis of iron management proteins in the liver of Tg mice indicates that the FTL‐Tg mouse liver is iron deficient. Our data suggest that disruption of iron metabolism in the brain has a primary role in the process of neurodegeneration in HF and that the pathogenesis of HF is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron‐induced ferritin aggregates in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.