Abstract:The objectives of improving the efficiency, and integration, of renewable sources by are complex in practice and should be linked to an increase of demand-side flexibility. The main challenges to achieving this flexibility are the lack of incentives and an adequate framework. For instance, customers' revenue is usually low, the volatility of prices is high and there is not any practical feedback to customers from smart meters. The possibility of increasing customer revenue could reduce the uncertainty with respect to economic concerns, improving investments in efficiency, enabling technology and thus, engaging more customers in these policies. This objective could be achieved by the participation of customers in several markets. Moreover, Demand Response and Energy Efficiency can share ICT technologies but this participation needs to perform an aggregation of demand. The idea of this paper is to present some methodologies for facilitating the definition and evaluation of energy versus cost curves; and subsequently to estimate potential revenues due to Demand Response. This can be accomplished by models that estimate: demand and energy aggregation; economic opportunities and benefits; impacts on customer convenience; customer feedback and price analysis. By doing so, we would have comprehensive information that can help customers and aggregators to define energy packages and their monetary value with the objective of fostering their market participation.
The development of Short-Term Forecasting Techniques has a great importance for power system scheduling and managing. Therefore, many recent research papers have dealt with the proposal of new forecasting models searching for higher efficiency and accuracy. Several kinds of artificial intelligence (AI) techniques have provided good performance at predicting and their efficiency mainly depends on the characteristics of the time series data under study. Load forecasting has been widely studied in recent decades and models providing mean absolute percentage errors (MAPEs) below 5% have been proposed. On the other hand, short-term generation forecasting models for photovoltaic plants have been more recently developed and the MAPEs are in general still far from those achieved from load forecasting models. The aim of this paper is to propose a methodology that could help power systems or aggregators to make up for the lack of accuracy of the current forecasting methods when predicting renewable energy generation. The proposed methodology is carried out in three consecutive steps: (1) short-term forecasting of energy consumption and renewable generation; (2) classification of daily pattern for the renewable generation data using Dynamic Time Warping; (3) application of Demand Response strategies using Physically Based Load Models. Real data from a small town in Spain were used to illustrate the performance and efficiency of the proposed procedure.
The objective of this paper involves the analysis, identification and evaluation of different possibilities offered by technology for the improvement and the management of the use of energy and hybridization in railways: On board generation, demand response and energy storage, both in traction and auxiliary loads, considering the aggregation of resources and its stochastic nature. The paper takes into account the importance of efficient use of energy in railways, both currently (trains in service, prototypes) and in the future, considering the trends driven by energy policy scenarios (2030–2050) that will affect service and operation of units during their lifetime. A new activity has been considered that will be relevant in the future in the framework of a new electricity supply paradigm: Smart-Grids. According to this paradigm, the interaction of the Electric Power System and the Railway Supply System (somehow embedded in the Power System) will bring new opportunities for the collaboration of these two systems to perform, in a wise economic fashion, a better and more reliable operation of the complete energy system. The paper is focused on a mixed profile with low-medium traffic (passenger and freight): The first part of the route is electrified (3 kV DC catenary) whereas the second part is not electrified. Results justify that complex policies and objectives bring an opportunity to make cost-effective the hybridization of railway units, especially in low/medium traffic lines, which improves their social and economic sustainability.
The development of renewable sources in residential segments is basic to achieve a sustainable energy scenario in the horizon 2030–2050 because these segments explain around 25% of the final energy consumption. Demand Response and its effective coordination with renewable are additional concerns for residential segments. This paper deals with two problems: the demonstration of cost-effectiveness of renewables in three different scenarios, and the application of the flexibility of demand, performing as energy storage systems, to efficiently manage the generation of renewable sources while improving benefits and avoiding penalties for the customer. A residential customer in Spain has been used as example. The work combines the use of a commercial simulator to obtain photovoltaic generation, the monitoring of customer to obtain demand patterns, and the development of a Physically-Based Model to evaluate the capability of demand to follow self-generation. As a main result, the integration of models (load/generation), neglected in practice in other approaches in the literature, allows customers to improve revenue up to 20% and reach a basic but important knowledge on how they can modify the demand, development of new skills and, in this way, learn how to deal with the characteristics and limitations of both Demand and Generation when a customer becomes a prosumer. This synergy amongst demand and generation physically-based models boosts the possibilities of customers in electricity markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.