Several studies on asymmetric rolling processes use the Finite Element Method (FEM) to predict material deformation and optimize process parameters, such as rolls’ forces and torques. Early studies focused on the observation and measure of curvature effects due to the asymmetric conditions. However, these models could not predict mechanical behavior associated with the texture evolution during the rolling processes. More recent studies introduced crystal plasticity (CP) models into the FEM to analyze and quantify the texture evolution during plastic forming. However, these coupled techniques need more investigation, especially concerning the mechanical behavior of the material during and after multi-stage ASR procedures. The purpose of this work is to present an up-to-date literature review on the implementation of asymmetric rolling processes in finite element analysis. It shows a summarized overview of the asymmetric rolling model parameters from different authors and gives a brief description of the crystallographic models used in their studies. In the end, some suggestions for future work dedicated to the analysis of ASR through FEM are given.
Asymmetric rolling is a forming process that has raised interest among researchers due to the significant improvements it introduces to the mechanical response of metals. The main objective of the present work is to perform a numerical study on asymmetrical rolled aluminum alloy sheets to identify and correlate the effect of the additional shear strain component on the material formability, tensile strength, and texture orientations development during multi-pass metal forming. Conventional (CR), asymmetric continuous (ASR-C), and asymmetric rolling-reverse (ASR-R) simulations were carried out using the visco-plastic self-consistent (VPSC) code. For the ASR process, two different shear strain values were prescribed. Moreover, two hardening models were considered: a Voce-type law and a dislocation-based model that accounts for strain path changes during metal forming. Results showed that the ASR process is able to improve the plastic strain ratio and tensile strength. The ASR-C revealed better results, although the expected shear orientations are only evident in the ASR-R process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.