Chronic arthritis induces hypermetabolism and cachexia. Ghrelin is a gastrointestinal hormone that has been proposed as a treatment to prevent cachexia. The aim of this work was to examine the effect of administration of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) to arthritic rats. Male Wistar rats were injected with Freund's adjuvant, and 15 days later arthritic and control rats were daily injected with GHRP-2 (100 microg/kg) or with saline for 8 days. Arthritis induced an increase in serum ghrelin (P < 0.01) and a decrease in serum concentrations of leptin (P < 0.01), whereas GHRP-2 administration increased serum concentrations of leptin. GHRP-2 increased food intake in control rats but not in arthritic rats. However, in arthritic rats GHRP-2 administration ameliorated the external symptoms of arthritis, as it decreased the arthritis score (10.4 +/- 0.8 vs. 13.42 +/- 0.47, P < 0.01) and the paw volume. In addition, circulating IL-6 and nitrites/nitrates were increased by arthritis, and GHRP-2 treatment decreased the serum IL-6 levels (P < 0.01). To elucidate whether GHRP-2 is able to modulate IL-6 release directly on immune cells, peritoneal macrophage cultures were incubated with GHRP-2 or ghrelin, the endogenous ligand of the growth hormone (GH) secretagogue receptor. Both GHRP-2 (10(-7) M) and ghrelin (10(-7) M) prevented endotoxin-induced IL-6 and decreased nitrite/nitrate release from peritoneal macrophages in vitro. These data suggest that GHRP-2 administration has an anti-inflammatory effect in arthritic rats that seems to be mediated by ghrelin receptors directly on immune cells.
Granado, Miriam, Teresa Priego, Ana I. Martín, Mª Á ngeles Villanú a, and Asunción López-Calderón. Ghrelin receptor agonist GHRP-2 prevents arthritis-induced increase in E3 ubiquitin-ligating enzymes MuRF1 and MAFbx gene expression in skeletal muscle.
A. Fenofibrate, a PPAR␣ agonist, decreases atrogenes and myostatin expression and improves arthritis-induced skeletal muscle atrophy. Am J Physiol Endocrinol Metab 300: E790 -E799, 2011. First published February 8, 2011 doi:10.1152/ajpendo.00590.2010.-Arthritis is a chronic inflammatory illness that induces cachexia, which has a direct impact on morbidity and mortality. Fenofibrate, a selective PPAR␣ activator prescribed to treat human dyslipidemia, has been reported to decrease inflammation in rheumatoid arthritis patients. The aim of this study was to elucidate whether fenofibrate is able to ameliorate skeletal muscle wasting in adjuvant-induced arthritis, an experimental model of rheumatoid arthritis. On day 4 after adjuvant injection, control and arthritic rats were treated with 300 mg/kg fenofibrate until day 15, when all rats were euthanized. Fenofibrate decreased external signs of arthritis and liver TNF␣ and blocked arthritis-induced decreased in PPAR␣ expression in the gastrocnemius muscle. Arthritis decreased gastrocnemius weight, which results from a decrease in cross-section area and myofiber size, whereas fenofibrate administration to arthritic rats attenuated the decrease in both gastrocnemius weight and fast myofiber size. Fenofibrate treatment prevented arthritis-induced increase in atrogin-1 and MuRF1 expression in the gastrocnemius. Neither arthritis nor fenofibrate administration modify Akt-FoxO3 signaling. Myostatin expression was not modified by arthritis, but fenofibrate decreased myostatin expression in the gastrocnemius of arthritic rats. Arthritis increased muscle expression of MyoD, PCNA, and myogenin in the rats treated with vehicle but not in those treated with fenofibrate. The results indicate that, in experimental arthritis, fenofibrate decreases skeletal muscle atrophy through inhibition of the ubiquitin-proteasome system and myostatin.
Castillero E, Martín AI, López-Menduiña M, Villanúa MA, López-Calderón A. Eicosapentaenoic acid attenuates arthritis-induced muscle wasting acting on atrogin-1 and on myogenic regulatory factors. Am J Physiol Regul Integr Comp Physiol 297: R1322-R1331, 2009. First published September 9, 2009 doi:10.1152/ajpregu.00388.2009.-Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that has anti-inflammatory and anticachectic actions. The aim of this work was to elucidate whether EPA administration is able to prevent an arthritis-induced decrease in body weight and muscle wasting in rats. Arthritis was induced by intradermal injection of Freund's adjuvant; 3 days later, nine rats received 1 g/kg EPA or coconut oil daily. All rats were killed 15 days after adjuvant injection. EPA administration decreased the external signs of arthritis and paw volume as well as liver TNF-␣ mRNA. EPA did not modify arthritis-induced decrease in food intake or body weight gain. However, EPA treatment prevented arthritis-induced increase in muscle TNF-␣ and atrogin-1, whereas it attenuated the decrease in gastrocnemius weight and the increase in MuRF1 mRNA. Arthritis not only decreased myogenic regulatory factors but also increased PCNA, MyoD, and myogenin mRNA in the gastrocnemius. Western blot analysis showed that changes in protein content followed the pattern seen with mRNA. In the control rats, EPA administration increased PCNA and MyoD mRNA and protein.In arthritic rats, EPA did not modify the stimulatory effect of arthritis on these myogenic regulatory factors. The results suggest that in experimental arthritis, in addition to its anti-inflammatory effect, EPA treatment attenuates muscle wasting by decreasing atrogin-1 and MuRF1 gene expression and increasing the transcription factors that regulate myogenesis. adjuvant-induced arthritis; ubiquitin-proteasome system; MyoD; myogenin; proliferating cell nuclear antigen CHRONIC INFLAMMATORY DISEASES such as cancer, sepsis, and rheumatoid arthritis are associated with a decrease in body weight, skeletal muscle atrophy, and cachexia. Cachexia is a complex metabolic syndrome associated with underlying
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.