Ciber Fisiopatología obesidad y nutrición (CB06/03) Instituto Salud Carlos III, SpainBackground: There is epidemiological evidence that perinatal nutritional factors may have long-term effects on obesity. Which nutrients or food components are involved in this programming mechanism are unknown. Breast milk contains leptin, a hormone that regulates food intake and energy expenditure, and previous studies in rats have shown that leptin orally administered during lactation exerts anorexigenic effects. Objective: To evaluate whether supplementation with physiological doses of oral leptin during lactation has long-term effects on body weight regulation. Design: A daily oral dose of leptin (equivalent to five times the amount of leptin ingested normally from maternal milk during the suckling period) or the vehicle was given to suckling male rats during lactation. Animals were fed after weaning with a normal fat (NF) or a high-fat (HF) diet. We followed body weight and food intake of animals until the age of 6 months, and measured the size of adipose tissue depots, the thermogenic capacity, the expression of leptin in the stomach and adipose tissues and the expression of two appetite-related peptides (neuropeptide Y (NPY) and proopiomelanocortin (POMC)), leptin receptor (OB-Rb) and suppressor of cytokine signalling 3 (SOCS-3) in the hypothalamus at the age of 6 months. Results: Leptin-treated animals had, in adulthood, lower body weight and fat content and ate fewer calories than their untreated controls. Unlike adipocitary leptin production, adult animals that were leptin-treated during lactation displayed higher gastric leptin production without changes in OB-Rb mRNA levels. In addition, in response to HF diet, leptin-treated animals (contrary to controls) showed lower hypothalamic NPY/POMC mRNA ratio. Hypothalamic OB-Rb mRNA levels decreased in control animals as an effect of HF diet feeding, but remained unchanged in leptin-treated animals; SOCS-3 mRNA levels were lower in leptin-treated animals than in their controls, both under normal or HF diet. Conclusion: The animals that received leptin during lactation become more protected against fat accumulation in adult life and seem to be more sensitive to the short-and long-term regulation of food intake by leptin. Thus, leptin plays an important role in the earlier stages of neonatal life, as a component of breast milk, in the prevention of later obesity.
Chronic arthritis induces hypermetabolism and cachexia. Ghrelin is a gastrointestinal hormone that has been proposed as a treatment to prevent cachexia. The aim of this work was to examine the effect of administration of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) to arthritic rats. Male Wistar rats were injected with Freund's adjuvant, and 15 days later arthritic and control rats were daily injected with GHRP-2 (100 microg/kg) or with saline for 8 days. Arthritis induced an increase in serum ghrelin (P < 0.01) and a decrease in serum concentrations of leptin (P < 0.01), whereas GHRP-2 administration increased serum concentrations of leptin. GHRP-2 increased food intake in control rats but not in arthritic rats. However, in arthritic rats GHRP-2 administration ameliorated the external symptoms of arthritis, as it decreased the arthritis score (10.4 +/- 0.8 vs. 13.42 +/- 0.47, P < 0.01) and the paw volume. In addition, circulating IL-6 and nitrites/nitrates were increased by arthritis, and GHRP-2 treatment decreased the serum IL-6 levels (P < 0.01). To elucidate whether GHRP-2 is able to modulate IL-6 release directly on immune cells, peritoneal macrophage cultures were incubated with GHRP-2 or ghrelin, the endogenous ligand of the growth hormone (GH) secretagogue receptor. Both GHRP-2 (10(-7) M) and ghrelin (10(-7) M) prevented endotoxin-induced IL-6 and decreased nitrite/nitrate release from peritoneal macrophages in vitro. These data suggest that GHRP-2 administration has an anti-inflammatory effect in arthritic rats that seems to be mediated by ghrelin receptors directly on immune cells.
We have previously described that neonate rats supplemented with physiological doses of oral leptin during lactation become more protected against overweight in adulthood. The purpose of this study was to characterize further the long-term effects on glucose and leptin homeostasis and on food preferences. Neonate rats were supplemented during lactation with a daily oral dose of leptin or the vehicle. We followed body weight and food intake of animals until the age of 15 months, and measured glucose, insulin, and leptin levels under different feeding conditions: ad libitum feeding, 14-h fasting, and 3-h refeeding after fasting. An oral glucose tolerance test and a leptin resistance test were performed. Food preferences were also measured. Leptin-treated animals were found to have lower body weight in adulthood and to eat fewer calories than their controls. Plasma insulin levels were lower in leptin-treated animals than in their controls under the different feeding conditions, as was the increase in insulin levels after food intake. The homeostatic model assessment for insulin resistance index was significantly lower in leptin-treated animals, and the oral glucose tolerance test also indicated higher insulin sensitivity in leptin-treated animals. In addition, these animals displayed lower plasma leptin levels under the different feeding conditions and were also more responsive to exogenous leptin administration. Leptin-treated animals also showed a lower preference for fat-rich food than their controls. These observations indicate that animals supplemented with physiological doses of oral leptin during lactation were more protected against obesity and metabolic features of the metabolic syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.